BE CIVIL ENGINEERING

1902CE401	BUILDING MATERIALS AND MANAGEMENT	L	Т	Р	С	
		3	0	0	3	
UNIT I	BUILDING MATERIALS			9 Ho	urs	
Lime, Brick, T	imber and its Products, Floor and Wall Tiles, Pozzolanas, Ferrous meta	ls, Ther	mal I	nsulat	tion	
	ing Materials: Glass, Timber, Aluminum, Plastics, Paints, Varnishes, Dis					
	fing Materials, Ferrocement and its application, Fabre textiles - Geo mem	oranes as	nd Ge	otext	iles	
for earth reinfor			1	<u> </u>		
UNIT II	BUILDING COMPONENTS			9 Ho	urs	
	Partition wall and Cavity wall, Composite Masonry, Doors, Windows, Ventilators, Stairs, Lift, Ramps,					
	Escalators, Anti Termite Treatment, Brick masonry-Bond- Jointing-Stone masonry					
	Temporary building structures - Site Clearance - Marking –Earthwork, Slip and moving forms, scaffolding, Plumbing and Sanitation, Fire Protection, Introduction to Building Maintenance, Acoustics and Sound					
Insulation.	annation, Fire Protection, introduction to Building Maintenance, Acoustic	s and So	ouna			
UNIT III	SUB STRUCTURE AND SUPERSTRUCTURE TECHNIQUES			9 Ho	urs	
	box jacking- pipe jacking- under water construction of diaphragm walls and	1 basem		/ 110	uis	
	niques, caisson -sinking cofferdam, Dewatering and stand by plant equipm			round	1	
0	, Launching girders, bridge decks, off shore platforms, braced domes and		<u> </u>			
ÚNIT IV	CONSTRUCTION EQUIPMENTS			9 Ho	urs	
Selection of equ	ipment for earth work - types of earthwork equipment, Equipment for ma	erial har	ndling	and		
	ctures, Equipment for dredging, trenching, tunneling, Equipment for comp	action <mark>, b</mark>	atchir	ng and	1	
	creting, Equipment for foundation and pile driving.					
UNIT V	MANAGEMENT			9 Ho	urs	
	gement - Material Procurement and Delivery - Inventory Control - Tradeo	ffs of Co	osts in			
Materials Mana	-			5 II.		
	Tot		4	5 Ho	urs	
COURSE OUTCO	MES:					
1. Summari	ze the most common and advanced materials used for construction.					
	the construction process of various building components.					
-	he various construction methods and techniques involved in sub structure	-				
	he appropriate modern construction tools and equipment in various constru	iction ac	tivitie	es.		
	he appropriate method of management for materials.					
REFERENCE						
U	C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.					
	"Engineering Materials", S. Chand and Company Ltd., 2008.					
3.Gambhir.M.L.,	, "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 20	04				
4. Duggal.S.K.	4. Duggal.S.K., "Building Materials", 4th Edition, New Age International, 2008.					
~ ~ ~	5.Jagadish.K.S, "Alternative Building Materials Technology", New Age International, 2007.					
	, &NehaJamwal., "Building Materials, products, properties and system					
Tata McGraw Hi	ata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.					

1902CE505			ENVIRON	MENTAI	ENGINE	EERING		L	Т	Р	С
								3	0	0	3
Course Object											
			he water supp								
			ability to eval								em.
			tudents to ana						ldings	5.	
			d the importa					stem.			
	5.	Γo create an	ability to desi	gn the was	te water tre	atment syst	tem.				
	6.	Го impart the	e signification	of disposa	l of Sewag	e.					
Unit I	WATER	SUPPLY S	<mark>YSTEMS – S</mark>	SOURCE .	AND CON	VEYANCI	E			9 H	ours
Objectives - Po	opulation fo	recasting - 1	Design period	l – Water d	lemand –Se	ources of w	ater – Sou	irce se	electio	on – W	Vater
quality parame	eters and sig	gnificance –	Standards – I	ntake struc	tures – Co	nveyance -	- Hydrauli	cs -	Layin	g, joir	nting
and testing of p											
Unit II			<mark>ES OF WA</mark> T							9 H	
Objectives - S											
disinfection –											
Demineralizati	on – Aerat	ion – Iron 1	removal – De	efluoridati	on – Opera	tion and n	naintenan	ce asp	pects	– Res	sidue
management.											
Unit III	DISTRI									9 H	
Requirements			Components -						atwor	k desi	ign ·
Analysis of dis	stribution ne										
	x 1 1		rdy cross me	thod – Equ	ivalent pip	e method -	Pipe App				
and maintenand		tection, Meth	rdy cross me lods. House s	thod – Equ ervice con	ivalent pip nection - Sy	e method - stems of pl	Pipe App lumbing.			-opera	atior
Unit IV	SEWER/	tection, Meth	rdy cross me ods. House s EM, COLLE	thod – Equ ervice con <mark>CTION A</mark>	ivalent pip nection - Sy ND TRAN	e method - stems of pl SMISSION	Pipe App lumbing. <mark>N</mark>	urtena	ances	-opera 9 H	ation ours
Unit IV Sources of was	SEWER stewater – 9	tection, Meth AGE SYSTI Quantity of a	rdy cross me ods. House s CM, COLLE sanitary sewa	thod – Equ ervice con CTION A ge – Storr	ivalent pip nection - Sy ND TRAN n runoff es	e method - ystems of pl SMISSION timation –	Pipe App lumbing. N Wastewat	er cha	ances	-opera 9 H ristics	ation ours and
Unit IV Sources of was significance –	SEWER A stewater – 0 Effluent di	tection, Meth AGE SYSTI Quantity of s sposal stand	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi	thod – Equ ervice con CTION A ge – Storr gn of sew	ivalent pip nection - Sy ND TRAN n runoff es	e method - ystems of pl SMISSION timation –	Pipe App lumbing. N Wastewat	er cha	ances	-opera 9 H ristics	ation ours and
Unit IV Sources of was significance – testing of sewe	SEWERA stewater – (Effluent di rs – Sewer a	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel	thod – Equ ervice con CTION A ge – Storr gn of sew ection.	ivalent pip nection - Syn ND TRAN n runoff es ers – Com	e method - ystems of pl SMISSION timation –	Pipe App lumbing. N Wastewat	er cha	ances	-opera 9 He ristics inting	ours and and
Unit IV Sources of was significance – testing of sewe Unit V	SEWERA stewater – (Effluent di rs – Sewer a SEWAG	tection, Metl AGE SYSTI Quantity of s sposal stand appurtenance E TREATM	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI	ivalent pip nection - S ND TRAN n runoff es ers – Com	e method - ystems of pl SMISSION timation – puter appli	Pipe App lumbing. N Wastewat cations –	er cha Layin	ances aracte ng, jo	-opera 9 He ristics inting 9 He	ours and and ours
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se	SEWERA stewater – 0 Effluent di rs – Sewer 3 SEWAG. election of t	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design	ivalent pip nection - S ND TRAN n runoff es ers – Com principles o	e method - ystems of pl SMISSION timation – puter appli	Pipe App lumbing. N Wastewat cations –	er cha Layir	ances aracte ng, jo	-opera 9 He ristics inting 9 He ent, sc	ours and and ours ours
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of t chamber, pri	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design t, activated	ivalent pip nection - S ND TRAN n runoff es ers – Com principles o sludge pro	e method - ystems of pl SMISSION timation – puter appli of primary a cess – Aera	Pipe App lumbing. Wastewat cations – and second ation tank	er cha Layin lary ti and o	ances aracte ng, jo reatmo xidati	-opera 9 Ha ristics inting 9 Ha ent, sc ion dit	ation ours and and ours creer tch -
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of t chamber, pri –Stabilizati	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design t, activated	ivalent pip nection - S ND TRAN n runoff es ers – Com principles o sludge pro	e method - ystems of pl SMISSION timation – puter appli of primary a cess – Aera	Pipe App lumbing. Wastewat cations – and second ation tank	er cha Layin lary ti and o	ances aracte ng, jo reatmo xidati	-opera 9 Ha ristics inting 9 Ha ent, sc ion dit	ation ours and and ours creen
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm	SEWERA stewater – 0 Effluent di rs – Sewer 3 SEWAG election of to chamber, pri –Stabilizati ing.	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – S	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo	dary tr and o osal –	ances aracte ng, jo reatmo xidati Bioga	-opera 9 He ristics inting 9 He ent, sc ion dit s reco	ours and and ours reer tch -
Unit IV Sources of was significance – testing of sewer Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of u chamber, pri –Stabilizati ing. and – Disp	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – S	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo	dary tr and o osal –	ances aracte ng, jo reatmo xidati Bioga	-opera 9 He ristics inting 9 He ent, sc ion dit s reco	ours and and ours reen tch –
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of u chamber, pri –Stabilizati ing. and – Disp	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – S	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's	er cha Layin lary ti and o osal – mode	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours and and ours creen tch - vvery vater
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of u chamber, pri –Stabilizati ing. and – Disp chniques.	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – S	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo	er cha Layin lary ti and o osal – mode	ances aracte ng, jo reatmo xidati Bioga	-opera 9 He ristics inting 9 He ent, sc ion dit s reco	ours and and ours creen tch - vvery vater
Unit IV Sources of was significance – testing of sewer Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques.	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – s osal into w	andy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies –	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg sag curve	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's	er cha Layin lary ti and o osal – mode	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours anc anc ours creer tch - vvery vate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. mes: After con	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – s osal into w	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies –	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p – Oxygen dent will b	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg sag curve e able to	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Tot	urtena eer cha Layin dary ti and o osal – mode al:	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours anc anc ours creer tch - vvery vate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. Mes: After con 1. 1	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – s osal into w pletion of th Design the co	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies –	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p - Oxygen dent will b the transm	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg sag curve e able to ission main	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Tot ter convey	er cha Layin dary ti and o osal – mode al:	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours anc anc ours creer tch - vvery vate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWER/ stewater - 0 Effluent di rs - Sewer a SEWAG. election of u chamber, pri -Stabilizati ing. and - Disp chniques. mes: 1. 1 2. 1	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – s osal into w pletion of th Design the co Design the w	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design a, activated vith soak p - Oxygen dent will b the transm t units base	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main of on its pri-	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Tot ter convey	er cha Layin dary ti and o osal – mode al:	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours and and ours creer tch - vvery vvate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of the chamber, pri- -Stabilization ing. and – Dispection chanques. Meter con 1. 1 2. 1 3. 1	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – a osal into w pletion of the Design the co Design the w Extend the w	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- pmponents of ater treatmen ater distributi	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design a activated vith soak p - Oxygen dent will b the transm t units base on to the i	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main of on its pri- ndividual b	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions	dary tr and o osal – al:	ances aracte ng, jo reatmo xidati Bioga 1 – W	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev 45 Ho	ours and and ours creer tch - vvery vvate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. Mest After con 1. 1 2. 1 3. 1 4. 1	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedimed ion ponds – a osal into w pletion of th Design the co Design the w Extend the w Build a sewe	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – <u>e course, Stu-</u> pmponents of ater treatmen ater distributi rage system b	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main od on its pri- ndividual b mation and	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions	al: ze of s	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. mes: After con 1. 1 2. 1 3. 1 4. 1 5. 1	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – s osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- pmponents of ater treatmen ater distributi	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main od on its pri- ndividual b mation and	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions	al: ze of s	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours and and ours reen tch - vvery vater ours
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. mes: After con 1. 1 2. 1 3. 1 4. 1 5. 1	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedimed ion ponds – a osal into w pletion of th Design the co Design the w Extend the w Build a sewe	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – <u>e course, Stu-</u> pmponents of ater treatmen ater distributi rage system b	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main od on its pri- ndividual b mation and	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions	al: ze of s	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ancours ancours creer tch - overy vater
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcom	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. Mes: After con 1. 1 2. 1 3. 1 4. 1 5. 1 0	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – a osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t quantity.	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p - Oxygen dent will b the transm t units base on to the i y flow esti	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main d on its pri- ndividual b mation and treatment of	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing of waste w	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	al: ze of s	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ancours ancours creer tch - overy vater
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcon References: Garg, S.K., Em	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of the chamber, pri- –Stabilizati ing. and – Disp chniques. Mest: After con 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – 3 osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t quantity.	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni-	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p - Oxygen – Oxygen dent will b the transm t units base on to the i y flow esti ts for the	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main of on its pri- ndividual b mation and treatment of ners, New I	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and nildings designing of waste w Delhi, 2003	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ancours ancours creer tch - overy vater
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcon References: Garg, S.K., Em Punmia, B.C., 3	SEWERA stewater – 0 Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. Mese After con 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental Jain, A.K., a	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – 3 osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t quantity.	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni-	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p - Oxygen – Oxygen dent will b the transm t units base on to the i y flow esti ts for the	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main of on its pri- ndividual b mation and treatment of ners, New I	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and nildings designing of waste w Delhi, 2003	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcon References: Garg, S.K., Em Punmia, B.C., Sources Newsletter, 200	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. mes: After com 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental Jain, A.K., a 05	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – a osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t quantity. Engineering and Jain.A., 1	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- pmponents of ater treatmen ater distributi rage system b reatment unit	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti ts for the nna Publis al Engineer	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main id on its pri- ndividual b mation and treatment of ners, New I ing, Vol.II,	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and nildings designing of waste w Delhi, 2003 Lakshmi P	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcor Garg, S.K., Em Punmia, B.C., J Newsletter, 200 Manual on Sew	SEWERA stewater – 0 Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. mes: After com 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental Jain, A.K., a 05 verage and S	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – a osal into w peletion of th Design the co Design the w Build a sewe Design the t quantity. Engineering and Jain.A., 1 Sewage Trea	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment unit g Vol. II, Kha Environmenta	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti ts for the nna Publis al Engineer	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main id on its pri- ndividual b mation and treatment of ners, New I ing, Vol.II,	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and nildings designing of waste w Delhi, 2003 Lakshmi P	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours and and ours creeer tch - overy vate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcon Garg, S.K., Em Punmia, B.C., J Newsletter, 200 Manual on Sew Government of	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. mes: After com 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental Jain, A.K., a 05 verage and S f India, New	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – s osal into w pletion of th Design the co Design the w Build a sewe Design the t quantity. Engineering and Jain.A., 1 Sewage Trea 7 Delhi, 1997	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni- g Vol. II, Kha Environmenta	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti ts for the EO, Minis	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main ad on its pri- ndividual b mation and treatment of ners, New I ing, Vol.II, ry of Urbas	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing of waste w Delhi, 2003 Lakshmi P n Developm	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcor Garg, S.K., Em Punmia, B.C., J Newsletter, 200 Manual on Sew	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. mes: After con 1. 1 2. 1 3. 1 4. 1 5. 1 4. 1 5. 1 4. 1 5. 1 4. 1 5. 1 4. 1 5. 1 5. 4 Vironmental Jain, A.K., a 05 verage and S f India, "Ma	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – 3 osal into w pletion of th Design the co Design the w Build a sewe Design the t quantity. Engineering and Jain.A., 1 Sewage Trea 2 Delhi, 1997 nual on Wat	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni- g Vol. II, Kha Environmenta	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti ts for the EO, Minis	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main ad on its pri- ndividual b mation and treatment of ners, New I ing, Vol.II, ry of Urbas	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing of waste w Delhi, 2003 Lakshmi P n Developm	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates

1902CE552		ENVIRONMENTAL ENGINEERING LAB	L	Т	Р	С
			0	0	2	1
Course Object	tives:					
		ne basics, importance of water and wastewater treatment and me	ethods	s mea	suren	nent.
		ne various effects of water and waste water pollution.				
		BOD and COD				
		alcium, Potassium and Sodium				
		etal effects and finding methods				
List of experin						
	1	I, Electrical conductivity and turbidity				
2. Deterr	nination of <mark>C</mark>	alcium, Potassium and Sodium				
3. Deterr	nination of Pl	nosphate and Sulphate				
4. Deterr	nination of O	ptimum Coagulant Dosage by Jar test apparatus				
5. Deterr	nination of av	vailable Chlorine in Bleaching powder and residual chlorine in v	water			
6. Deterr	nination of A	mmonia Nitrogen				
7. Estima	ation of suspe	nded, volatile and fixed solids				
8. Deterr	nination of D	issolved Oxygen				
9. Estima	ation of B.O.I	<mark>)</mark>				
10. Estima	ation of C.O.	D				
			Tota	al:	45 H	ours
Course Outco						
		letion of the course, Student will be able to				
	1.characteri	ze given water and waste water sample				
References:						
		examination of water and wastewater, APHA, 20th Edition, Wa	shing	ton, 1	1998	
		tal Engineering Vol. I & II", Khanna Publishers, New Delhi				
3. Modi, P.N.,	"Environmer	tal Engineering Vol. I & II", Standard Book House, Delhi-6				

1902CE603		HYDROLOGY AND WATER RESOURCES ENGINEERING	L	Т	Р	C
			3	0	0	3
Course Object	ctives:				•	
		ce the student to the concept of hydrological aspects of ements and should be able to quantify, control and regulate t				•
Unit I	PRECIPI	TATION AND ABSTRACTIONS			9 Ho	ours
Hydrologica	l cycle-M	leteorological measurements-Requirements, types a	nd	forr	ns	of
precipitation Interception-		ges-Spatial analysis of rainfall data using Thiessen and I. . Horton's equation, pan evaporation measurements				
1	1	Horton's equation-double ring infiltrometer, infiltration indic		e i u	Porue	1011
Unit II	RUNOFF	Torion e equation double ring minimeneer, minimus mai			9 Ho	ours
		d basin-Catchment characteristics-factors affecting runoff-	Run d	off es		
		s table and SCS methods–Stage discharge relationships flo				
Hydrograph-	•	e e i				
Unit III		ND DROUGHT			9 Ho	ours
Natural Dis	asters-Flood	Estimation-Frequency Analysis-Flood Control-Definition	ions	of		
		gical and agricultural droughts-IMD method-NDVI analy			•	
Area Program	• •			U		
Unit IV	RESERVO				9 Ho	ours
Classification	n of reserve	birs, General principles of design, site selection, spillway	vs, el	evati	on–ar	ea-
capacity-stor	age estimati	on, sedimentation-life of reservoirs-rule curve				
Unit V	GROUND	WATER AND MANAGEMENT			9Ho	ours
Origin-Class	ification and	l types-properties of aquifers-governing equations-steady a	ind u	nstea	dy flo	<mark>w-</mark>
artificial recl	narge-RWH	in rural and urban areas				
		Tota	al:		45 Ho	ours
Further Read	ling:					
		prepare data for GIS and RS				
	2. Civil e	ngineering application for various fields				
Course Outco	omes:					
	After comp	letion of the course, Student will be able to				
	1. Explair	the key drivers on water resources, hydrological proces	sses a	and th	neir	
	integra	ted behavior in catchments				
		se of hydrological models to surface water problems includ	ing b	asin		
		eristics, runoff and Hydrograph				
		the concept of hydrological extremes such as Flood an	nd Di	rough	it and	
		ement strategies				
		be the importance of spatial analysis of rainfall and desig	n wa	ter st	orage	
	reservo					
	5. Illustra	te the concepts of groundwater for water resources manager	nent			
References:						
	-	ing Hydrology"-Tata McGraw Hill, 2010				
David Keith I	odd. "Groun	dwater Hydrology", John Wiley & Sons, Inc. 2007				

1901MGX01		TOTAL QUALITY MANAGEMENT	L	Т	P	C
			3	0	0	3
Course Objec	tives:	To facilitate the understanding of Quality Managem	ent p	orinci	ples	and
		process.				
Unit I	INTRODU	UCTION			9 Ho	ours
Introduction –	Need for a	quality – Evolution of quality – Definitions of quality	/ – D	imer	nsion	<mark>s of</mark>
		ity – Basic concepts of TQM – TQM Framework -				
U .		sby – Barriers to TQM – Quality statements – C				
	ntation, Cu	stomer satisfaction, Customer complaints, Customer	reter	ntion	<u>– C</u>	<mark>osts</mark>
of quality. Unit II	TOM DDI	NCIPLES			9 Ho	
		c quality planning, Quality Councils – Employee	inv			
-		ent, Team and Teamwork, Quality circles Recognit				
		– Continuous process improvement – PDCA cycl				
		arthering, Supplier selection, Supplier Rating	_, _ ~	,		
Unit III	-	OLS AND TECHNIQUES I			9 Ho	ours
The seven tra	aditional to	ools of quality - New management tools - Six	sigm	a: C	Conce	pts,
		ns to manufacturing, service sector including IT -	Benc	h m	arkin	ig –
		ench marking process – FMEA – Stages, Types.				
Unit IV		OLS AND TECHNIQUES II			9 Ho	
		Capability – Concepts of Six Sigma – Quality Func			-	
(QFD) – Tagu measures.	icni quality	r loss function – TPM – Concepts, improvement nee	as –	Peri	orma	ince
Unit V		Y SYSTEMS			9Hc	ours
	<u> </u>	SO 9001-2008 Quality System – Elements, Docun	nenta	tion		
		– ISO 14000 – Concepts, Requirements and I				
		acturing and service sectors.				
		Tota	al:	4	5 Ho	ours
Further Read	ing:					
	0	eering economics and cost analysis				
		ruction and planning management				
Course Outco						
		pletion of the course, Student will be able to	<u> </u>	0.5	1015	
		nderstand the concepts, dimension quality and philoso	phies	ot	QM.	
		nderstand the principles of TQM and its strategies.				
		oply seven statistical quality and management tools.				
		nderstand TQM tools for continuous improvement. Inderstand the QMS and EMS.				
	J. UI					

1902CE604		GLOBAL WAR CHANGE	MING AND CLIN	IATE	L	T	Р	C
					3	0	0	3
Course Obje	ectives:							
	W 2. To 3. To	rming. analyze the globa	arth's Climate Systen l warming and their mpact of climate ch	effects due to cl	imate	e cha	inge.	ion
Unit I		NTRODUCTION OF GLOBAL WARMING					9 Ho	ours
	tants-oxides	of nitrogen - parti	ation- the mole co iculate - Green Hou RE, EMISSION	se Gases.	alcula AN		s- pp 9 Ho	
		TREADING	,					
	le from veh	cle - miscellaneou	emissions from p is source of carbon	dioxide- uptake	of ca	arbor		
Unit III	<mark>OVERVI</mark> SCIENCH		TE VARIABILI	FY AND CLI	MAT	Έ <mark>Ε</mark>	9 Ho	ours
			mate prediction - the p			vsica	l clin	nate
Unit IV		F GLOBAL CL		0	2		9 Ho	urs
			e system - basics of processes - the carbo		cing -	atm	iosph	eric
Unit V		*	IN THE CLIMAT					9
								ours
			state- temperature – saturation - wave	e processes in th	e atr	nosp	here	and
Course Outo	omes.			Tota	al:	4	5 Ho	urs
	After com 1.Outline 2. Explain 3. Illustrat 4. Describ	he principle invol the carbon emission about the climate the climate comp	se, Student will be a ved in the greenhou on and its mitigation e variability parame ponents and the circ	se gas emission. n methods. ters. ulation system.				
	5. Discuss	about the physical	l processes involved	l in the climate s	ysten	1.		

1903CE033	WATER POLLUTION AND MANAGEMENT	L	Т	Р	С
		3	0	0	3
Course Objec	tives:				
	1. To impart knowledge on the importance and necessity of water				
	2. To educate about the water pollution and its impact				
	3. To impart knowledge on water quality analyzing techniques				
	4. To make awareness in monitoring and management of water				
Unit I	WATER RESOURCES				ours
	roperties of water -Water resources of the world and India -National V	Nater	Polic	≿y− W	/ater
	& subsurface sources – Water Quality Parameters – Standards.				
Unit II	WATER POLLUTION				ours
	sification, nature and Toxicology of water pollutants -Ground water pollut	tion–C	Ocean	Pollu	ition
	- River pollution-A case study				
Unit III	EFFECTS OF WATER POLLUTION				ours
	er pollutants on Human health- Ecological and Economic impacts of water	pollut	tion-l	Marin	e oil
pollution and i					
Unit IV	ANALYSIS & INSTRUMENTATION				ours
	Pollutants: Titrimetry - Gravimetry - Spectrophotometry - Chromate				
	trumentation: Principles and Applications of UV-VIS Spectrophotometer	– Fla	me P	hoton	neter
	orption Spectrophotometer –Gas Chromatography – GLC – HPLC				
Unit V	MONITORING & MANAGEMENT			9 H	
	monitoring-Water (Prevention and Pollution Control) act 1974 - Pollution	on co	ntrol	devic	es –
Polluters pay p	1				
	Tot	al:	4	45 H	ours
Further Read					
	1. Water supply engineering				
	2. Waste water engineering				
Course Outco	mes:				
	After completion of the course, Student will be able to				
	1. Illustrate about the sources of water and the quality standards				
	2. Classify the nature of pollutants and its source				
	3. Outline the effects of water pollution on biodiversity				
	4. Select the suitable analysis technique for the water quality parameter of	estima	ntion		
	5. Select the accurate monitoring and management methods				
References:					
1. Laurent H	odges – Environmental Pollution				
2. Willard, N	ferritt and Dean – Instrumental Analysis				
	Analysis of Water and Waste Water				
5. AITIA-1	marysis of water and waste water				

1901HS002	INTELLECTUAL PROPERTY RIGHTS FOR ENGINEERS	L	T	Р	C
		3	0	0	3
PREREQUISITE					
cover trader conte	ourse assumes no prior skill or background in design, art or en s the fundamental aspects of intellectual property (IP): copyrig narks, patents, geographical indications, and industrial designs nporary issues impacting the IP field such as: new plant varies cement of IP rights and emerging issues in IP.	ht and It als	related	l rights rs	,
COURSE OBJEC					
	1. A foundation in the basic concepts of IP				
	2. Better understanding of the relationship between IP and health, climate change, traditional knowledge and emer		· ·		such as
Module I In	troduction			9 H	ours
	Copyright, Trademarks, Geographical Indicators, Industria cement of IP Rights, Emerging Issues in IP & IP Managemen		gns, P	atents,	Unfair
	pyrights &Trademarks	L		6 H	ours
	e Study, Historical background, Principles, Notion of Wor	k, Rig	tts an		
0	ographical Indicators & Industrial Designs			6 H	ours
	e Study, Historical background, Principles, Notion of Wor	k, Rig	tts an		
Module IV Pate	ents			15 H	Iours
Property Protection	al Patent System and Regional Patent Protection Mechanic n Based on Types of Inventions, Legal Issues of the Paten tant Cases and Discussions, IP and Development - Flexibilitie urch	ting P	rocess,	Enfor	<mark>cement,</mark>
	ent Cooperation Treaty				ours
	se of PCT, Preparing a PCT Application, PCT Services, I	atent	Agent	and C	ommon
Representatives, In	nternational Search, International Examination		TOTA		TOTIDO
Course Outcomes			IUIA	L: 45 I	HOURS
 Explain va Explain co Explain ba Explain co 	nrious types of IPRs specific to Engineering oncepts such as Copyrights, Trademarks, GIs and Industrial de asic concepts of Engineering Patents oncept of Patent Search and various methods to do it sample PCT Application and explain examination procedures	-			
FURTHER REAL					
1.	Intellectual Property Rights by PandeyNeeraj&DharniKhus	-		akrishr	a B &
REFERENCES:					
· · ·	PR by Dr MK Bandarai, Central Law Publication, 2014				
	tellectual Property Rights, H.S. Chawla, Oxfors& IBH Publishin	g, 2020)		
	PR by JP Mishra, Central Law Publications				
4. https://patents.go	ogle.comIntroduction to IPR books				

1901HS00	6	DESIGN THINKING FOR INNOVATION	L	Т	Р	С
			3	0	0	3
PREREQU						
		rse assumes no prior skill or background in design, art, engine				
		all undergraduates and graduate students with an interest in lea				
	intervent	y recommended for those students planning social-venture and	a other	kinds o	r desig	n
COURSE						
COURSE		erstand how teaching and learning occurs in the design process	8			
		pgnize the ethical and social dilemmas and obligations of the p		of desig	on	
		gnose common adoption barriers in individuals, groups and org			5 ¹¹	
		elop a design theory from independent and qualitative research			0.00	
				servau	ons	
		cipate in and lead innovation in creative and collaborative sett	•			
	6. Und	ertake complex and unstructured problem-solving challenges i	n unfan	niliar de	omains	
Module I		luction to Design Thinking				ours
		sign, Why Design Thinking, 5-Step Design Thinking Pro	cess, A	pplicat	ions, (Creativ
		ture of Innovation			10.1	T
Module II		1 Thinking Approach		Ŧ		Iours
		Design Thinking, Divergent Thinking & Innovation Funnel,				Maps t
Module II		Opportunities, Case Study : Turing Creative Ideas into Viab	le Con	ipames	1	
		oring Design Thinking ToolKit ation, Ideation, Experimentation, Evolution			3 П	ours
		Challenge Project: Phase-1			5 H	ours
		Project Plan, How Might We statement, Project Timeline, F	Project	Check1		Juis
Module V		Challenge Project: Phase-2	10/000			Iours
		tand the Challenge, Prepare Research, Gather Inspiration, 1	nterpre	tation		
Search for	meaning	, Frame Opportunities, Ideation – Generate Ideas, Refin	e Ideas	Expe	erimen	tation
		t Feedback, Evolution – Track Learnings, Engage Others		, <u> </u>		
	<u>, , , , , , , , , , , , , , , , , , , </u>		r	ΓΟΤΑΙ	L: 45]	HOUR
Course Ou	itcomes:					
		cepts and basics of Design Thinking Principles				
		gn Thinking Approach through IDEO's method & Customer Jo				
		views and synthesize learnings to uncover insights and identify	opport	unities	for inn	ovatio
	•	iven Innovative Solutions to Real World Problems				
FURTHE						
		n for Social Impact: How to by IDEO.org				
	-	n Thinking Tool Kit by IDEO.org				
		eld guide to Human Centered Design by IDEO.org				
REFEREN	ICES:					
		e: Unleashing the Creative Potential Within Us All Book by D	avid M	. Kelley	and T	om
	Confidence	e: Unleashing the Creative Potential Within Us All Book by D	avid M	. Kelley	and T	om
1.Creative Kelley, 201	Confidence	e: Unleashing the Creative Potential Within Us All Book by D How Design Thinking Transforms Organizations and Inspires			and T	om

1901MGX07	UNIVERSAL HUMAN VALUES & ETHICS	L	Т	Р	С	
		3	0	0	3	
Course Object						
	1. To help students distinguish between values and skills, and un	derst	and	the n	eed,	
	basic guidelines, content and process of value education.					
	2. To help students initiate a process of dialog within themselves t	to kn	ow v	vhat t	hey	
	'really want to be' in their life and profession		. f	o 1		
	3. To help students understand the meaning of happiness and prospective	penty	/ Ior	a nui	nan	
	being.4. To facilitate the students to understand harmony at all the level	e of	hum	n liv	ina	
	and live accordingly.	5 01	IIUIII	an nv	mg,	
	5. To facilitate the students in applying the understanding of harmony in existence in					
	their profession and lead an ethical life	ony i		stene	c m	
	then profession and lead an ethical me					
Unit I	Course Introduction - Need, Basic Guidelines, Content and	1		9 Ho	ours	
	Process for Value Education	•		/		
Understandin	g the need, basic guidelines, content and process for Valu	o Ec	luco	tion	Salf	
	what is it? - its content and process; 'Natural Acceptance'					
1	1 / 1		-			
	s the mechanism for self-exploration - Continuous Happiness a		-	•		
	Human Aspirations - Right understanding, Relationship and Pl					
-	uirements for fulfillment of aspirations of every human being					
	nderstanding Happiness and Prosperity correctly- A critical					
	rio - Method to fulfill the above human aspirations: understand	ding	and	livin	g in	
harmony at va						
Unit II	Understanding Harmony in the Human Being - Harmony i	in		9 Ho	ours	
<u> </u>	Myself		• 1	(D 1	<u> </u>	
	human being as a co-existence of the sentient 'I' and the					
•	the needs of Self ('I') and 'Body' - Sukh and Suvidha - Understand	•		•		
	I' (I being the doer, seer and enjoyer) - Understanding the character nony in 'I' - Understanding the harmony of I with the Body: Sany					
	al of Physical needs, meaning of Prosperity in detail - Programs to e				-	
Swasthya	ar of r hysical needs, meaning of r tosperity in detail - r tograms to t	IISUI		iyam	anu	
Unit III	Understanding Harmony in the Family and Society- Harm	onv		10 Ho	mrs	
		UIIY		10 110	Juis	
		v				
Understanding	in Human-Human Relationship	v	ling	value	e in	
•	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Unde	rstan	-			
human-human	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Unde relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ens	rstan sure l	Jbha	y-trip	ti;	
human-human Trust (Vishwas	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Unde relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ens s) and Respect (<i>Samman</i>) as the foundational values of relationship -	rstan sure <i>l</i> Und	<i>Jbha</i> ersta	y- <i>trip</i> nding	<i>ti</i> ; the	
human-human Trust (Vishwas meaning of Vi	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensist and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understar	rstan sure <i>l</i> Und	<i>Jbha</i> ersta the	y- <i>trip</i> nding meai	<i>ti</i> ; the	
human-human Trust (Vishwas meaning of Vi of Samman, Di	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensitive and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understar ifference between respect and differentiation; the other salient values	rstand sure <i>l</i> Und nding in rel	<i>Jbha</i> ersta the lation	y- <i>trip</i> nding meai nship	<i>ti</i> ; the	
human-human Trust (Vishwas meaning of Vi of Samman, Di Understanding	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensist and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understant ifference between respect and differentiation; the other salient values the harmony in the society (society being an	rstand sure <i>l</i> Und nding in rel	<i>Jbha</i> ersta the lation	y- <i>trip</i> nding meau nship sion	<i>ti</i> ; the ning of	
human-human Trust (Vishwas meaning of Vi of Samman, Di Understanding family): Samad	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensist and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understant ifference between respect and differentiation; the other salient values the harmony in the society (society being an <i>dhan, Samridhi, Abhay, Sah-astitva</i> as comprehensive Human Goal	rstand sure <i>l</i> Und nding in rel in rel	<i>Jbha</i> ersta the lation xtens Visu	y- <i>trip</i> nding mean ship sion alizin	<i>ti</i> ; the ning of g a	
human-human Trust (Vishwas meaning of Vi of Samman, Di Understanding family): Samaa universal har	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensist and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understant ifference between respect and differentiation; the other salient values the harmony in the society (society being an	rstand sure <i>l</i> Und nding in rel in rel	<i>Jbha</i> ersta the lation xtens Visu	y- <i>trip</i> nding mean ship sion alizin	<i>ti</i> ; the ning of g a	
human-human Trust (Vishwas meaning of Vi of Samman, Di Understanding family): Samaa universal har	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensi- s) and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understar ifference between respect and differentiation; the other salient values the harmony in the society (society being an <i>dhan</i> , <i>Samridhi</i> , <i>Abhay</i> , <i>Sah-astitva</i> as comprehensive Human Goal monious order in society- Undivided Society (<i>AkhandSamaj</i>),	rstand sure <i>l</i> Und nding in rel in rel ls - Uni	<i>Jbha</i> ersta the lation xtens Visu	y- <i>trip</i> nding mean ship sion alizin	<i>ti</i> ; the ning of g a rder	

Understanding the harmony in the Nature - Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature - Understanding Existence as Co-existence (*Sah-astitva*) of mutually interacting units in all-pervasive space - Holistic perception of harmony at all levels of existence

Unit V	Implications of the above Holistic Understanding of Harmony	8 Hours
	on Professional Ethics	

Natural acceptance of human values - Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order - Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, - b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models - Case studies of typical holistic technologies, management models and production systems - Strategy for transition from the present state to Universal Human Order:a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers - b) At the level of society: as mutually enriching institutions and organizations

		Total:	45 Hours	
Further Proceeding:				
1.	Analysis about Code of Conduct for Ethical & Me	oral values		
Course Outcomes:				
After c	mpletion of the course, Student will be able to			
1. Understand the significance of value inputs in a classroom and start apply				
them i	their life and profession			
2. Dis	inguish between values and skills, happ	iness and acc	umulation of	
physic	I facilities, the Self and the Body, Intent	tion and Comp	etence of an	
individ	ual, etc.	-		
3. Un	erstand the value of harmonious relationship	p based on trust	and respect	
in thei	life and profession			
4. Un	erstand the role of a human being in ensur	ring harmony i	n society and	
nature				
5. Dis	inguish between ethical and unethical prac	ctices, and start	working out	
the stra	tegy to actualize a harmonious environment	wherever they	work.	
References:				
1. A Nagraj, 1998, Jeev	nVidyaEkParichay, Divya Path Sansthan, Amarka	intak.		
2. P L Dhar, RR Gaur, 1	990, Science and Humanism, Commonwealth Pub	lishers.		
3. A N Tripathy, 2003, 1	Iuman Values, New Age International Publishers.			
4. Ivan Illich, 1974, Ene	gy & Equity, The Trinity Press, Worcester, and H	arper Collins, US	A	

1902CE019		L	Т	Р	С
170202017	COASTAL ZONE MANAGEMENT	3	0	0	$\frac{c}{3}$
		3	U	U	3
	At the end of the semester,				
	1. The student shall be able to understand the coastal processes				
~	I I I I I I I I I I I I I I I I I I I				
Course Objectives:	2. The student shall be able to understand the coastal dynamics				
0	3. The student shall be able to understand impacts of structures like do	ocks, ha	arbors	and	
	quays leading to simple management perspectives along the coastal ze				
Unit I	COASTAL ZONE			9 H	ours
	Coastal zone regulations – Beach profile – Surf zone – Off shore – Coasta	l water	s - E		
	Lagoons – Living resources – Nonliving resources.				
	AVE DYNAMICS			9 He	ours
Wave classifica	tion - Airy's Linear Wave theory - Deep water waves - Shallow water w	aves –	Wave	e pres	sure
	- Wave Decay - Reflection, Refraction and Diffraction of waves - Break	ing of [,]	waves	s - W	ave
	res – Vertical – Sloping and stepped barriers – Force on piles.				
	AVE FORECASTING AND TIDES			9 H	ours
	sting - SMB and PNJ methods of wave forecasting - Classification of tide	es – Da	irwin	's	
	bry of tides – Effects on structures – seiches, Surges and Tsunamis.			_	
	OASTAL PROCESSES			9 He	_
	positional shore features – Methods of protection – Littoral currents – Coa	stal aq	uifers	– Sea	l
	– Impact of sewage disposal in seas.				
				0.11	
	ARBOURS	Imoda	ofdr	9 He	
Structures near	coast – Selection of site – Types and selection of break waters – Need and	<mark>l mode</mark>	of dr		
Structures near	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest.			edgin	g –
Structures near Selection of dre	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To	l mode tal:			g –
Structures near Selection of dre Further Reading	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:		edgin 45 He	g – ours
Structures near Selection of dre Further Readin	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scien	tal:		edgin 45 He	g – ours
Structures near Selection of dre Further Readin	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 999	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scient 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999 nes:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. 8 Course Outcor At	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor Ai 1.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor An 1. 2. 3. 4.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor Ai 1. 2. 3. 4. 5.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor Ai 1. 2. 3. 4. 5. References:	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", M ook Co., 1999 mes:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor An 1. 2. 3. 4. 5. References: 1.Ed. A.T. Ippe	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999 nes: Image: Ima	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 1. 2. B Course Outcor At 1. 2. 3. 4. 5. References: 1.Ed. A.T. Ippe 2.Dwivedi, S	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Sciet 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999 nes:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. 8 Course Outcor Ai 1. 2. 3. 4. 5. References: 1.Ed. A.T. Ippe 2.Dwivedi, S Tamilnadu",	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Sciet 299 Quinn, A.D., "Design & Construction of Ports and Marine Structures", M ook Co., 1999 nes: fter completion of the course, Student will be able to Describe the Coastal zone regulations, Describe the coastal processes Explain the wave dynamics and forecast waves Understand the erosion and depositional shore protection Plan the coastal structures including harbours and tides n, "Coastline Hydrodynamics", McGraw-Hill Inc., New York, 1993 S.N., Natarajan, R and Ramachandran, S., "Coastal Zone Management in Madras, 199 Maras	tal:	Publis Hill	edgin 45 He hing (g – ours
Structures near Selection of dre Further Readin 1. 1. 2. B Course Outcor Ai 1. 2. 3. 4. 5. References: 1.Ed. A.T. Ippe 2.Dwivedi, S Tamilnadu", 3.Richard Sy	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Sciet 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999 nes:	tal:	Publis Hill	edgin 45 He hing (g – ours

ME ENVIRONMENTAL ENGINEERING

2102EV104	ENVIRONMENTAL CHEMISTRY	L	Т	Р	С
		3	0	0	3
Course Objectives:					
1. To e	ducate the students about water chemistry				
	mpart knowledge in the area of air and soil chemistry				
	mpart knowledge on the transformation of chemicals in the env	vironi	nent		
Unit I Introdu				9 He	
	s balance-Chemical equilibrium, acid base, solubility product (tal
	ic hydroxides, CO2 solubility in water and species distribution	– Ch	emic	al	
	Principles of green chemistry.				
	Chemistry			<u>11 Ho</u>	
	rs- environmental significance and determination; Fate of cher			•	2
	zation, partitioning, hydrolysis, photochemical tran				
	c chemicals-Metals, complex formation, oxidation and reducti				
	- sorption- Colloids, electrical properties, double layer theory,	envir	onme	ental	
significance of colloids	0			- 11	
	neric Chemistry			7 He	ours
	chemical and photochemical reactions – photochemical smog	-		•	1
	gases and global warming, CO_2 capture and sequestration – A	cid ra	1n- 0	rigin	and
	ates. Air quality parameters-effects and determination.			0.11	
Unit IV Soil Che		1		9 Ho	
	of soil-Clays- cation exchange capacity-acid base and ion-exc				
electrokinetic remediati	nicals in soil-Reclamation of contaminated land; salt by leaching	ig-ne	avy	metai	s by
	mental Chemicals			9 Ho	nire
	l speciation – Speciation of Hg & As- Organic chemicals- Pestic	cides	Dio		Juis
	rine disruptors and their Toxicity- Nano materials, CNT, titani				
environmental application	· ·	<i>a</i> , coi	npos	1105,	
environmentar appread					
	Tota	al:		45 Ho	ours
Further Reading					
	ze and create a solution for environmental issues.				
Course Outcomes:					
	npletion of the course, Student will be able to				
1. Dist	nguish the chemistry involved				
2. Und	erstand the chemistry involved in water				
3. Iden	ify and solve the air pollution related issues				
4. Und	erstand the soil related chemistry and issues				
5. Iden	ify contaminating chemicals and can work out chemicals ne	ed ca	alcula	ations	for
treat	ment purpose				

2102EV102		ENVIRONMENTAL MICROBIOLOGY	L	Т	Р	С
			3	0	0	3
Course Obje	ectives:					
		urse provides a basic understanding on microbiolog		o envii	onme	ental
	enginee	ering for candidates with little prior knowledge of the	e subject.			
		orphology, behavior and biochemistry of bacteria, f	ungi, protoz	oa, vii	uses,	and
		are outlined.				
		icrobiology of wastewater, sewage sludge and solid		-		
	-	rovided. Aspects on nutrient removal and the trans	mission of	diseas	e-cau	sing
		sms are also covered.				
		posure to toxicology due to industrial products and by				
		ourse provides a basic understanding on microbiolog	•	o envii	onme	ental
		ering for candidates with little prior knowledge of th	e subject.			
Unit I		ion And Characteristics			<u>5 Ho</u>	
		anisms – prokaryotic, eukaryotic, cell structure, char	acteristics,	Preserv	vation	l of
-		NA, replication, Recombinant DNA technology.			10.11	
Unit II		And Nutrient Cycles	<u>c 1 1</u>		10 He	ours
	•	nisms – Distribution / diversity of Microorganisms –				
		urface soil, Air – outdoor and Indoor, aerosols, biosa			_	
		rchaebacteria – Significance in water supplies – prob				
		iogeochemical cyclesHydrological - Nitrogen, C Micro Organism in nutrient cycle.	ardon, Phos	pnorus	,	
Unit III		n of Microorganisms			10 H	nire
		in microorganisms, growth phases, carbohydrate, pr	otein linid i			
		naerobic-fermentation, glycolysis, Kreb''s cycle, hexe				
		rt system, oxidative phosphorylation, environmental		.	U U	
Bioenergetics	-	it system, onduit e phosphory fution, en inomnentur		vmes		
	š.		Tactors, chiz	ymes,		
						ours
Unit IV	Pathogens	in Wastewater			10 H	ours
Unit IV Introduction	Pathogens to Water Bor	in Wastewater	an, Animal	and Pla	10 H ant	
Unit IV Introduction	Pathogens to Water Bor mission of pa	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth	an, Animal s, Indicator	and Pla organi	10 H ant sms c	of
Unit IV Introduction health, Trans water – Colif	Pathogens to Water Bor mission of pa forms -	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C	an, Animal s, Indicator Concentratio	and Pla organi on and	10 H ant sms c detec	of
Unit IV Introduction health, Trans water – Colif of virus. Con	Pathogens to Water Bor mission of pa orms - trol of micro	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth	an, Animal s, Indicator Concentratic cesses – aer	and Pla organi on and obic a	10 H ant sms c detec nd	of tion
Unit IV Introduction health, Trans water – Colif of virus. Con anaerobic,	Pathogens to Water Bor mission of pa forms - trol of micro oxidation, β	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro	an, Animal s, Indicator Concentratic cesses – aer	and Pla organi on and obic a	10 H ant sms c detec nd	of tion
Unit IV Introduction health, Trans water – Colif of virus. Con anaerobic,	Pathogens to Water Bor mission of pa forms - trol of micro oxidation, β	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro -oxidation, nitrification and de-nitrification, eutrophi ate. Microbiology of Sewage Sludge.	an, Animal s, Indicator Concentratic cesses – aer	and Pla organi on and obic an ients F	10 H ant sms c detec nd	of tion val
Unit IV Introduction health, Trans water – Colif of virus. Con anaerobic, – BOD, Nitro Unit V Ecotoxicolog	Pathogensto Water Bormission of paormstrol of microoxidation, β ogen, PhosphToxicologyy - toxicants	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro -oxidation, nitrification and de-nitrification, eutrophi ate. Microbiology of Sewage Sludge. and toxicity, Factors influencing toxicity. Effects –	an, Animal s, Indicator Concentratic cesses – aer cation. Nutr acute, chron	and Pla organi on and obic an ients F	10 He ant sms c detec nd Remov 10 He	of tion val
Unit IV Introduction health, Trans water – Colif of virus. Con anaerobic, – BOD, Nitro Unit V Ecotoxicolog	Pathogensto Water Bormission of paormstrol of microoxidation, β ogen, PhosphToxicologyy - toxicants	in Wastewater The pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro -oxidation, nitrification and de-nitrification, eutrophi ate. Microbiology of Sewage Sludge.	an, Animal s, Indicator Concentratic cesses – aer cation. Nutr acute, chron	and Pla organi on and obic an ients F	10 He ant sms c detec nd Remov 10 He	of tion val
Unit IV Introduction health, Trans water – Colif of virus. Con anaerobic, – BOD, Nitro Unit V Ecotoxicolog	Pathogens to Water Bor mission of pathology orms trol of micro- -oxidation, β - ogen, Phosph Toxicology y - toxicants coxicity testir	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro -oxidation, nitrification and de-nitrification, eutrophi ate. Microbiology of Sewage Sludge. and toxicity, Factors influencing toxicity. Effects –	an, Animal s, Indicator Concentratic cesses – aer cation. Nutr acute, chron ication, bioa	and Pla organi on and obic an ients F	10 Ha ant sms c detec nd Remov 10 Ha st bio	of tion val Durs
Unit IV Introduction health, Trans water – Colif of virus. Con anaerobic, – – BOD, Nitro Unit V Ecotoxicolog organisms – t	Pathogens to Water Bor mission of pathology orms trol of micro- -oxidation, β - ogen, Phosph Toxicology y - toxicants coxicity testir	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro -oxidation, nitrification and de-nitrification, eutrophi ate. Microbiology of Sewage Sludge. and toxicity, Factors influencing toxicity. Effects –	an, Animal s, Indicator Concentratic cesses – aer cation. Nutr acute, chron	and Pla organi on and obic an ients F	10 He ant sms c detec nd Remov 10 He	of tion val Durs
Unit IV Introduction health, Trans water – Colif of virus. Con anaerobic, – – BOD, Nitro Unit V Ecotoxicolog organisms – t	Pathogens to Water Bor mission of pa orms trol of micro oxidation, β ogen, Phosph Toxicology y – toxicants oxicity testir pioleaching.	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro -oxidation, nitrification and de-nitrification, eutrophi ate. Microbiology of Sewage Sludge. and toxicity, Factors influencing toxicity. Effects – ng, Bio concentration – Bioaccumulation, bio magnif	an, Animal s, Indicator Concentratic cesses – aer cation. Nutr acute, chron ïcation, bioa	and Pla organi on and obic an ients F	10 Ha ant sms c detec nd Remov 10 Ha st bio	of tion val Durs
Unit IV Introduction health, Trans water – Colif of virus. Con anaerobic, – – BOD, Nitro Unit V Ecotoxicolog organisms – t monitoring, b Further Rea	Pathogens to Water Bor mission of pathology forms - trol of micro- -oxidation, β ogen, Phosph Toxicology y – toxicants coxicity testir pioleaching. ding Identification	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro -oxidation, nitrification and de-nitrification, eutrophi ate. Microbiology of Sewage Sludge. and toxicity, Factors influencing toxicity. Effects –	an, Animal s, Indicator Concentratic cesses – aer cation. Nutr acute, chron ïcation, bioa	and Pla organi on and obic an ients F	10 Ha ant sms c detec nd Remov 10 Ha st bio	of tion val Durs
Unit IV Introduction thealth, Transwater – Colif of virus. Con anaerobic, – BOD, Nitro Unit V Ecotoxicolog organisms – to monitoring, b	Pathogens to Water Bor mission of pathology forms - trol of micro- -oxidation, β ogen, Phosph Toxicology y – toxicants coxicity testir pioleaching. ding Identification	in Wastewater ne pathogens and Parasites and their effects on Hum athogens – Bacterial, Viral, Protozoan, and Helminth total coliforms, E-coli, Streptococcus, Clostridium, C organisms; Microbiology of biological treatment pro -oxidation, nitrification and de-nitrification, eutrophi ate. Microbiology of Sewage Sludge. and toxicity, Factors influencing toxicity. Effects – ng, Bio concentration – Bioaccumulation, bio magnif	an, Animal s, Indicator Concentratic cesses – aer cation. Nutr acute, chron ïcation, bioa	and Pla organi on and obic an ients F	10 Ha ant sms c detec nd Remov 10 Ha st bio	of tion val Durs

		1. The candidate at the end of the course will have a basic understanding on the basics of microbiology and their diversity and on the genetic material in the living cell.
		2. The candidate would be able to understand and describe the type of microorganisms in
		the environment and the role of microorganisms in the cycling of nutrients in an ecosystem.
		3. The candidate would have understood the role microbial metabolism in a wastewater
		treatment plant.
		4. The candidate would know the role of microorganisms in contaminated water and the
		diseases caused.
		5. The candidate has the ability to conduct and test the toxicity due to various natural and
		synthetic products in the environment.
Re	ferences:	
1.	S.C.Bhati	ia, Hand Book of Environmental Microbiology, Part 1 and 2, Atlantic Publisher
2.	Gabriel B	Bitton, Wastewater Microbiology, 2nd Edition,
3.	Raina M.	Maier, Ian L. Pepper, Charles P. Gerba, Environmental Microbiology, Academic Press.
4.	SVS. Rai	na, Essentials of Ecology and Environmental Science, 3rd Edition, Prentice Hall of India
	Private L	imited
5.	Stanley E	E. Manahan, Environmental Science and Technology, Lewis Publishers.
6.	Hurst, C.	J. (2002) Manual of Environmental Microbiology. 2nd Ed. ASM PRESS, Washington, D.C.
	ISBN 1-5	55581 - 199 - X.
7.	Frank C.	Lu and Sam Kacew, LU"s Basic Toxicology, Taylor & Francis, London (4th Ed), 2002

2103EV00	1		T	RANS	SPOR	TOFV	WATE	ER AN	D WA	STEV	VATE	R	L	Т	Р	С
													3	0	0	3
Course Ob	jectives:															
												water	transı	nissio	on ma	ains,
					•	em, sew						ain				
						s in con				on desi	gn.					
Unit I	<mark>Genera</mark>														8 H	
Fluid prope head loss in					-				-			-	-		ctiona	l
Unit II	Water '	Fra r	nsn	nissio	n and	Distrib	bution								10 H	ours
networks D water losse								enance	s – corr	rosion	preve	ntion – 1	minir	nizati	on of	
Unit III	Wastev	voto	~												40.77	
Wastewater maintenanc	ce of sewe	esigi .nd p	gn o pun	f sani ping	tary se statio	ewer; pa ns- sewe	artial fl er appı	low in urtena	nces; m	aterial	, cons	truction	, insp	ign; ectio		ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du	r pumps a ce of sewe rs. Storm - combine	esign nd p ers; E <mark>Wate</mark> ed an	gn o pum Des <mark>ter 1</mark> nd s	f sanit ping ign of Drain	tary se station f sewe nage nage ate sys	ewer; pa ns- sewe r outfal tem; Es	artial fl er appu ls-mix	low in urtenati ing co on of s	nces; m ndition	aterial s; con	, cons veyand	truction ce of cor	, insp rrosiv	ign; ectio re	n and 7 H (
Wastewater maintenance wastewater Unit IV Necessity- intensity du	r pumps a ce of sewe rs. Storm - combine uration an	esign nd p ers; E Wate ed an d fre	gn o pur Des ter I nd s equ	f sanif ping ign of Drain separa ency 1	tary se station f sewe nage nage relatio	ewer; pa ns- sewe r outfal tem; Es nships-	artial fl er appu ls-mix stimation Ration	low in urtenan ing co on of s nal me	nces; m ndition	aterial s; con	, cons veyand	truction ce of cor	, insp rrosiv	ign; ectio re of rai	n and 7 He	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V	r pumps a ce of sewe rs. Storm - combine aration an Case St	esign nd p ers; E Wate ed an d fre	gn o pum Des ter 1 nd s equa	f sanif ping ign of Drain epara ency 1 nd So	tary se station f sewe nage nage nage relatio	ewer; pa ns- sewe r outfal tem; Es nships-	artial fl er appu ls-mix timation Ration	low in urtenan ing co on of s nal me	torm w	aterial s; con vater ru	, cons veyand in-off	truction ce of con Formula	, insp trosiv	ign; ectio e of rai	n and 7 He infall 10 He	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du	r pumps a ce of sewe rs. Storm - combine uration an Case St puter sof	esign nd p ers; E Wate ed an d fre tware	gn o pum Des ter 1 nd s equa re ir	f sanif ping ign of Drain epara ency i nd Se	tary se station f sewe nage nage nage relatio oftwa er tran	ewer; pa ns- sewe r outfal tem; Es nships- re Appl smission	artial fl er appu ls-mix stimation Ration lication n, wate	low in urtenation ing co on of s nal me ns er distri	torm w thods.	aterial s; con vater ru	, cons veyand in-off ewer of	truction ce of con Formula	, insp trosiv	ign; ectio e of rai	n and 7 He infall 10 He	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com	r pumps a ce of sewe rs. Storm - combine uration an Case St puter sof	esign nd p ers; E Wate ed an d fre tware	gn o pum Des ter 1 nd s equa re ir	f sanif ping ign of Drain epara ency i nd Se	tary se station f sewe nage nage nage relatio oftwa er tran	ewer; pa ns- sewe r outfal tem; Es nships- re Appl smission	artial fl er appu ls-mix stimation Ration lication n, wate	low in urtenation ing co on of s nal me ns er distri	torm w thods.	aterial s; con vater ru	, cons veyand in-off ewer of	truction ce of con Formula	, insp crosiv ation EPA	ign; ectio re of rai	n and 7 He infall 10 He	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers	r pumps a ce of sewe rs. Storm - combine uration an Case St nputer soft sion 4.0, S	esign nd p ers; E Wate ed an d fre tware	gn o pum Des ter 1 nd s equa re ir	f sanif ping ign of Drain epara ency i nd Se	tary se station f sewe nage nage nage relatio oftwa er tran	ewer; pa ns- sewe r outfal tem; Es nships- re Appl smission	artial fl er appu ls-mix stimation Ration lication n, wate	low in urtenation ing co on of s nal me ns er distri	torm w thods.	aterial s; con vater ru	, cons veyand in-off ewer of	truction ce of con Formula lesign –	, insp crosiv ation EPA	ign; ectio re of rai	n and 7 He infall 10 He 2.0,	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers	r pumps a ce of sewe rs. Storm V - combine uration an Case St puter soft sion 4.0, S eading	esign nd p rrs; I Wate ed an d fre udie EWI	gn o pum Des ter 1 nd s equa re ir /ER	f sanit ping ign of Drain separa ency 1 and Se wate , BRA	tary se station f sewe nage ate sys relatio oftwa er tran ANCH	ewer; pa ns- sewe r outfal tem; Es nships- re Appl smission [, Canal	artial fl er appu ls-mix stimation Ration lication n, wate ++ an	low in urtenar ing co on of s nal me er distr d GIS	torm w thods.	aterial s; con vater ru a and s softwa	, cons veyand in-off ewer of	truction ce of con Formula lesign –	, insp crosiv ation EPA	ign; ectio re of rai	n and 7 He infall 10 He 2.0,	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers	r pumps a ce of sewe rs. Storm V - combine uration an Case St puter soft sion 4.0, S eading Designi	esign nd p rrs; I Wate ed an d fre ware EW1	gn o pum Des ter 1 nd s equa re ir /ER	f sanit ping ign of Drain separa ency 1 and Se wate , BRA	tary se station f sewe nage ate sys relatio oftwa er tran ANCH	ewer; pa ns- sewe r outfal tem; Es nships- re Appl smission [, Canal	artial fl er appu ls-mix stimation Ration lication n, wate ++ an	low in urtenar ing co on of s nal me er distr d GIS	torm w thods.	aterial s; con vater ru a and s softwa	, cons veyand in-off ewer of	truction ce of con Formula lesign –	, insp crosiv ation EPA	ign; ectio re of rai	n and 7 He infall 10 He 2.0,	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	r pumps a ce of sewe rs. Storm V - combine uration an Case St puter soft sion 4.0, S eading Designi	esign nd p rrs; I Watu ed an d fre ware EW	gn o pum Des ter 1 nd s equa re ir /ER	f sanif aping ign of Drain separa ency 1 and Se a wate , BRA	tary se station f sewe nage nage nage relatio oftwar er tran ANCH	ewer; pa ns- sewe r outfal tem; Es nships- re Appl smission [, Canal	artial fl er appu ls-mix stimation Ration lication n, wate ++ an	low in urtenar ing co on of s nal me er distr d GIS	nces; m ndition torm w thods. ibution based s	aterial s; con vater ru a and s softwa areas	, cons veyand in-off ewer of	truction ce of con Formula lesign –	, insp crosiv ation EPA	ign; ectio re of rai	n and 7 He infall 10 He 2.0,	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	r pumps a ce of sewe rs. Storm ' - combine uration an Case St nputer soft sion 4.0, S eading Designi itcomes: After co	esign nd p rrs; I Wate ed an d fre udie EWI 	gn o pum Des ter 1 nd s equa re ir /ER	f sanif ping ign of Drain separa ency 1 and So wate , BRA ipelin on of	tary se station f sewe nage ate sys relatio oftwa er tran ANCH es and the co	ewer; pa ns- sewe r outfal tem; Es nships- re Appl smission [, Canal	artial fl er appu ls-mix stimation Ration lication n, wate ++ an s for va	low in urtenar ing co on of s nal me er distr d GIS arious will be	nces; m ndition torm w thods. ibution based s	aterial s; con vater ru a and s softwa areas	, cons veyand in-off ewer of	truction ce of con Formula lesign –	, insp crosiv ation EPA	ign; ectio re of rai	n and 7 He infall 10 He 2.0,	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	r pumps a ce of sewe rs. Storm V - combine uration an Case St puter soft sion 4.0, S eading Designi itcomes: After co 1. Uno	esign nd p rrs; I Wate ed an d fre ware EWI ng o	gn o pum Des ter 1 nd s equ equ /ER /ER	f sanif ping ign of Drain separa ency 1 and Se wate , BRA ipelin on of 1 l the f	tary se station f sewe nage ate sys relatio oftwa er tran ANCH es and the co fluid f	ewer; pa ns- sewe r outfall tem; Es nships- re Appl smission (, Canal l sewers urse, St low pro	artial fl er appu ls-mix stimation Ration lication n, wate ++ an s for va s for va sudent perties	low in urtenan ing co on of s nal me er distr d GIS arious will be	nces; m ndition torm w thods. ibution based s project e able to	aterial s; con vater ru a and s softwa areas	, cons veyand in-off ewer of res.	truction ce of con Formula lesign –	, insp rrosiv ation EPA	ign; ectio e of rai	n and 7 He infall 10 He 2.0, 45 He	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	r pumps a ce of sewe rs. Storm V - combine uration an Case St nputer soft sion 4.0, S eading Designi itcomes: After co 1. Uno 2. Des 3. Des	esign nd p prrs; I Wate ed an d fre ware EWI ng o mg o ign v ign t	gn o pum Des ter I nd s equi- fes a re ir /ER	f sanif aping ign of Drain aepara ency 1 and So a wate , BRA ipelin ipelin on of l the f cer suj drain	tary se station f sewe nage ate sys relatio oftwa er tran ANCH es and the co fluid fl pply n age ne	ewer; pa ns- sewe r outfal tem; Es nships- re Appl smission [, Canal l sewers urse, St low pro nain, dis etwork f	artial fl er appu ls-mix stimation Ration lication n, wate ++ an s for va s for va stributi for was	low in urtenan ing co on of s nal me er distr d GIS arious will be s ion net stewat	nces; m ndition torm w thods. ibution based s project e able to work a	aterial s; con vater ru a and s softwa areas	, cons veyand in-off ewer of res.	truction ce of con Formula design – Tota	, insp rrosiv ation EPA	ign; ectio e of rai	n and 7 He infall 10 He 2.0, 45 He	ours
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	r pumps a ce of sewe rs. Storm Y - combine uration an Case St nputer soft sion 4.0, S eading Designi itcomes: After co 1. Uno 2. Des 3. Des 4. Des	esign nd p rrs; I Wate ed an d fre ware EWI ng o mpl lersta ign t	gn o pum Des ter I nd s eque re ir /ER of p letio tanc wat the the	f sanif ping ign of Drain separa ency 1 and So wate , BRA ipelin on of 1 l the f er suj drain storm	tary se station f sewe nage ate sys relatio oftwa er tran ANCH es and the co fluid fl pply n aage ne n wate	ewer; pa ns- sewe r outfall tem; Es nships- re Appl smission (, Canal l sewers urse, St low pro- nain, dis etwork f r draina	artial fl er appu ls-mix stimation Ration lication n, wate ++ an s for va s for va stributi for was age sys	low in urtenan- ing co on of s nal me er distr d GIS arious will be s ion net stewat	torm w thods. ibution based s project e able to work a er	aterial s; con vater ru a and s softwa areas o nd sev	, cons veyand in-off ewer of res.	truction ce of con Formula lesign – Tota	, insp rrosiv ation EPA	ign; ectio re of rai	n and 7 He infall 10 He 2.0, 45 He dition	Durs Durs Durs S
Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	r pumps a ce of sewe rs. Storm V - combine uration an Case St puter soft in 4.0, S eading Designi itcomes: After co 1. Uno 2. Des 3. Des 4. Des 5. Tro	esign nd p rrs; I Wate ed an d fre ware EWI ng o pmpl lerst: ign t ign t	gn o pum Des ter] nd s eque eque (es a re ir /ER	f sanif ping ign of Drain separa ency 1 and Se and Se a	tary se station f sewe nage ate sys relatio oftwa er tran ANCH es and the co fluid fl pply n age ne n wate g in w	ewer; pa ns- sewe r outfall tem; Es nships- re Appl smission (, Canal l sewers urse, St low pro- nain, dis etwork f r draina	artial fl er appu ls-mix stimation Ration lication n, wate ++ an s for va stributi for was stributi for was age sys id sew	low in urtenan- ing co on of s nal me er distri- id GIS arious will be s ion net stewat stems yage tr	torm w thods. ibution based s project e able to work a er	aterial s; con vater ru a and s softwa areas o nd sev	, cons veyand in-off ewer of res.	truction ce of con Formula design – Tota	, insp rrosiv ation EPA	ign; ectio re of rai	n and 7 He infall 10 He 2.0, 45 He dition	Durs Durs Durs S

2102EV103		PRINCIPLES AND DESIGN OF PHYSICO-	T	Р	С
		CHEMICAL TREATMENT SYSTEMS			
		3	0	0	3
Course Objectiv					
		To educate the students on the principles and process designs of va	arious	treat	nent
		ystems for water and wastewater			
		To educate the students on design of treatment systems and t		ompor	ents
Unit I		comprising such systems, leading to the selection of specific proces	s.	5 11	ours
		wastewater – characteristics, Standards for performance - Signific	ance		
		Selection criteria-types of reactors- reactor selection-batch- co		<u> </u>	
kinetics.		Selection enterna-types of reactors- reactor selection-baten- en	/11(111)	1043 (ypc-
Unit II	Trea	tment Principles		10 H	ours
Physical treatme	ent - S	creening - Mixing, Equalization - Sedimentation - Filtration -	Eva	poratio	on –
		sfer - mass transfer coefficient Adsorption - Isotherms - Memb			
		o filtration, ultra-filtration and hyper filtration electro dialysis			
	•	zation - Recent Advances. Principles of Chemical treatment		•	
		ation – flotation solidification and stabilization – Disinfection,	Ion	excha	nge,
		olvent extraction – advanced oxidation /reduction – Recent Trends		10.11	
Unit III		gn of Municipal Water Treatment Plants		<u>10 H</u>	
	atment				
1211 - 43		- Design of municipal water treatment plant units - Aerators - che			
	larifier	- tube settling - filters - Rapid sand filters, slow sand filter, pres	sure	filter,	dual
media Disinfecti	larifier on - D	- tube settling - filters - Rapid sand filters, slow sand filter, pres isplacement and gaseous type - Flow charts - Layouts - Hydrauli	sure c Pro	filter, file, P	dual ID -
media Disinfection construction and	larifier on - D	- tube settling - filters - Rapid sand filters, slow sand filter, pres	sure c Pro	filter, file, P	dual ID -
media Disinfection construction and Recent Trends.	larifier on - D l O&M	- tube settling – filters – Rapid sand filters, slow sand filter, pres isplacement and gaseous type - Flow charts – Layouts – Hydrauli aspects – case studies, Residue management – Upgradation of e	sure c Pro	filter, file, P g plai	dual ID - nts –
media Disinfecti construction and Recent Trends. Unit IV	larifier on - D l O&M	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulia aspects – case studies, Residue management – Upgradation of egn of Industrial Water Treatment Plants 	sure c Pro xistir	filter, file, P g plan 10H 0	dual ID - nts – urs
media Disinfecti construction and Recent Trends. Unit IV Design of Indust	larifier on - D l O&M Designation	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulit aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – 	sure c Pro xistin Den	filter, file, P g plan 10Ho ineral	dual PID - nts – urs isers
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos	larifier on - D l O&M Designation trial W sis plar	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulia aspects – case studies, Residue management – Upgradation of egn of Industrial Water Treatment Plants 	sure c Pro xistin Den tion	filter, file, P g plan 10Ho ineral	dual PID - nts – urs isers
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu	larifier on - D l O&M Designation trial W sis plan udies, I	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulid aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment Plants 	sure c Pro xistin Den tion	filter, file, P g plan 10Ho ineral and C	dual PID - nts – urs isers b&M
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V	larifier on - D l O&M Desi trial W sis plat udies, I Desi	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydrauli aspects – case studies, Residue management – Upgradation of e and findustrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment Plants 	sure c Pro xistin Dem tion nds.	filter, file, P g plan 10Ho ineral and C 10 Ho	dual PID - nts – urs isers 0&M
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni	larifier on - D l O&M Desi trial W sis plar udies, I Desi icipal	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulid aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment Plants 	sure c Pro xistin Den tion nds.	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh	dual PID - nts – urs isers 0&M Durs udge
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni thickening-sludg Units-Equalizatio	larifier on - D l O&M Designation is plan udies, I Designation icipal ge dewa	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulic aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment Plants wastewater Treatment Plants wastewater treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastev utralization-Chemical Feeding Devices-mixers- floatation units-oi 	sure c Pro xistin Den tion nds. g tan vater	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treatn mer I	dual ID - nts – urs isers &M ours udge nent Flow
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts	larifier on - D l O&M Designation wis plan udies, I Designation de dewa on- Ne s –Hyd	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulic aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastev utralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie 	sure c Pro xistin Den tion nds. g tan vater	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treatn mer I	dual ID - nts – urs isers &M ours udge nent Flow
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts	larifier on - D l O&M Designation wis plan udies, I Designation de dewa on- Ne s –Hyd	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulic aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment Plants wastewater Treatment Plants wastewater treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastev utralization-Chemical Feeding Devices-mixers- floatation units-oi 	sure c Pro xistin Den tion nds. g tan vater	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treatn mer I	dual ID - nts – urs isers &M ours udge nent Flow
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts	larifier on - D l O&M Designation wis plan udies, I Designation de dewa on- Ne s –Hyd	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulic aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastev utralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie 	sure c Pro xistin Den tion nds. g tan vater	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treatn mer I	dual PID - nts – urs isers &M ours udge nent Flow ng -
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts	larifier on - D l O&M Designation with the second larial W sis plan udies, I Designation dicipal se dewa on- Ne s –Hyd ment –	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulic aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastev utralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie Upgradation of existing plants – Recent Trends. 	sure c Pro xistin Den tion nds. g tan vater	filter, file, P g plan 10Ho ineral and C 10Ho ks- sh Treatu mer I trofitti	dual PID - nts – urs isers &M ours udge nent Flow ng -
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts Residue manager	larifier on - D l O&M Desi trial W sis plar udies, I Desi ticipal te dewa on- Ne s –Hyd ment –	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulic aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment Treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastev utralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie Upgradation of existing plants – Recent Trends. 	sure c Pro xistin Den tion nds. g tan vater s, Re	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treath mer I trofitti	dual PID - nts – urs isers &M ours udge nent Flow ng - ours
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts Residue manager	larifier on - D l O&M Desi trial W sis plar udies, I Desi trial W sis plar udies, I Desi deva trial W sis plar udies, I Desi sicipal se dewa on- Ne s –Hyd ment –	 – tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydrauli aspects – case studies, Residue management – Upgradation of e and findustrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Tree and Wastewater Treatment Plants wastewater treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastew utralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie Upgradation of existing plants – Recent Trends. 	sure c Pro xistin Den tion nds. g tan vater s, Re	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treath mer I trofitti	dual PID - nts - urs isers &M ours udge nent Flow ng - ours
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case stu Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts Residue manager	larifier on - D l O&M Desi irial W sis plar udies, I Desi icipal Desi icipal g dewa on- Ne s –Hyd ment – g Impl ees: After	– tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydrauli aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Tree gn of Wastewater Treatment Plants wastewater treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastev utralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie Upgradation of existing plants – Recent Trends.	sure c Pro xistin Den tion nds. g tan vater s, Re	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treath mer I trofitti	dual PID - nts – urs isers &M ours udge nent Flow ng - ours
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case str Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts Residue manager	larifier on - D l O&M Desi irial W sis plar udies, I Desi icipal ce dewa on- Ne s -Hyd ment - g Impl es: After 1. I	– tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulid aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants atter Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Treatment gn of Wastewater Treatment Plants wastewater treatment units-screens-detritors-grit chamber-settling attering systems-sludge drying beds - Design of Industrial Wastewater treatment units-screens-detritors-grit chamber-settling attering systems-sludge drying beds - Design of Industrial Wastewater Upgradation of existing plants – Recent Trends. Total:	sure c Pro xistin Den tion nds. g tan vater s, Re	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treath mer I trofitti	dual PID - nts – urs isers &M ours udge nent Flow ng - ours
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case str Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts Residue manager	larifier on - D l O&M I Design trial W sis plar udies, I Design dicipal cipal ge dewa on- Ne s –Hyd ment – g Imple tes: 1. I 2. U	– tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulid aspects – case studies, Residue management – Upgradation of e egn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Tree gn of Wastewater Treatment Plants wastewater treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastewater uralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie Upgradation of existing plants – Recent Trends. Total:	sure c Pro xistin Den tion nds. g tan vater s, Re	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treath mer I trofitti	dual PID - nts – urs isers &M ours udge nent Flow ng - ours
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case str Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts Residue manager	larifier on - D l O&M Designation with the second sis plan udies, I Designation the second s –Hyd ment – g Impl tes: After 1. I 2. U 3. I	– tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydrauli aspects – case studies, Residue management – Upgradation of e gn of Industrial Water Treatment Plants ater Treatment Units- Selection of process – Design of softeners – nts –Flow charts – Layouts –Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Tree gn of Wastewater Treatment Plants wastewater treatment units-screens-detritors-grit chamber-settling atering systems-sludge drying beds - Design of Industrial Wastew utralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie Upgradation of existing plants – Recent Trends. Total: ementation of advanced treatment technologies for various wastewater completion of the course, Student will be able to dentify the pollutants type in the wastewater Jnderstand the various treatment plants	sure c Pro xistin Den tion nds. g tan vater s, Re	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treath mer I trofitti	dual PID - nts – urs isers &M ours udge nent Flow ng - ours
media Disinfecti construction and Recent Trends. Unit IV Design of Indust –Reverse osmos aspects – case str Unit V Design of muni thickening-sludg Units-Equalizatio charts – Layouts Residue manager	larifier on - D l O&M Desi trial W sis plar udies, I Desi ticipal te dewa on- Ne s -Hyd ment - g Impl es: After 1. I 2. U 3. I 4. I	– tube settling – filters – Rapid sand filters, slow sand filter, pressisplacement and gaseous type - Flow charts – Layouts – Hydraulid aspects – case studies, Residue management – Upgradation of e error file, aspects – case studies, Residue management – Upgradation of error file, PID - construct and gaseous – Hydraulic Profile, PID - construct Residue management – Upgradation of existing plants – Recent Tree error for the management – Upgradation of existing plants – Recent Tree error for the systems-sludge drying beds - Design of Industrial Wastev utralization-Chemical Feeding Devices-mixers- floatation units-oi raulic Profile, PID, construction and O&M aspects – case studie Upgradation of existing plants – Recent Trends. Total:	sure c Pro xistin Den tion nds. g tan vater s, Re	filter, file, P g plan 10Ho ineral and C 10 Ho ks- sh Treath mer I trofitti	dual PID - nts – urs isers &M ours udge nent Flow ng - ours

21	02EV105		ENVIRONMENTAL CHEMISTRY	L	Т	Р	С
			LABORATORY				
				0	0	2	1
Co	ourse Objecti	ves:					
		1. To	train in the analysis of physical parameters of water and w	aste wat	er		
		2. To	train in the analysis of chemical parameters of water and w	vaste wa	nter		
Li	st of Experin	nents:					
1.	Good Labor	atory Pra	actices, Quality control, calibration of Glassware				
2.	Sampling a	nd Anal	ysis of water (pH, alkalinity, hardness chloride, Sulphat	e, turbio	dity H	EC, T	DS,
	nitrate, fluoi	ride)					
<mark>3.</mark>	Wastewater	analysis	(BOD, COD, Phosphate, TKN, Oil & Grease, Surfactant a	nd heav	y met	t <mark>als).</mark>	
<mark>4.</mark>	Sampling an	<mark>id analys</mark>	sis of air pollutants Ambient & Stack (RSPM, SO2 and NC	<mark>)</mark> x)			
<mark>5.</mark>	Sampling an	nd charac	terization of soil (CEC & SAR, pH and K).				
_							
				Tot	al:	45 Ho	ours
Co	ourse Outcom	nes:		Tot	al:	45 Ho	ours
Co	ourse Outcon		ompletion of the course, Student will be able to	Tot	al:	45 Ho	ours
Co	ourse Outcon	After c		Tot	al:	45 Ho	ours
		After c 1. ass	ompletion of the course, Student will be able to	Tota	al:	45 Ho	ours
	eferences:	After c 1. ass 2. co	ompletion of the course, Student will be able to ess quality of environment nduct analysis on characteristics of water and waste water		al:	45 Ho	ours
	eferences:	After c 1. ass 2. co	ompletion of the course, Student will be able to ess quality of environment		al:	45 Ho	DURS
	e ferences: APHA, Star Washington	After c 1. ass 2. co dard Me , 2005.	ompletion of the course, Student will be able to ess quality of environment nduct analysis on characteristics of water and waste water ethods for the Examination of Water and Wastewater, 21st 1	Ed.		45 Ho	ours
R e 1.	eferences: APHA, Star Washington Laboratory	After c 1. ass 2. co adard Me , 2005. Manual f	ompletion of the course, Student will be able to ess quality of environment nduct analysis on characteristics of water and waste water ethods for the Examination of Water and Wastewater, 21st 1 for the Examination of water, wastewater soil Rump, H.H.	Ed.		45 Ho	DURS
R e 1. 2.	eferences: APHA, Star Washington Laboratory	After c 1. ass 2. co adard Me , 2005. Manual f	ompletion of the course, Student will be able to ess quality of environment nduct analysis on characteristics of water and waste water ethods for the Examination of Water and Wastewater, 21st 1	Ed.		45 Ho	DURS
R (1). 2. 3.	eferences: APHA, Star Washington Laboratory I Second Edit	After c 1. ass 2. co adard Me , 2005. Manual f ion, VC	ompletion of the course, Student will be able to ess quality of environment nduct analysis on characteristics of water and waste water ethods for the Examination of Water and Wastewater, 21st 1 for the Examination of water, wastewater soil Rump, H.H.	Ed. and Kris	t, H.		ewis
Re 1. 2. 3. 4.	eferences: APHA, Star Washington Laboratory I Second Edit	After c 1. ass 2. co adard Me , 2005. Manual f ion, VC of air	ompletion of the course, Student will be able to ess quality of environment nduct analysis on characteristics of water and waste water ethods for the Examination of Water and Wastewater, 21st 1 for the Examination of water, wastewater soil Rump, H.H. a H, Germany, 1992. sampling & analysis, James P.Lodge Jr(Editor)	Ed. and Kris	t, H.		

		PRINCIPLES AND DESIGN OF BIOLOGICAL		Т	Р	С
		TREATMENT SYSTEMS		0	0	2
Course Objec	tives.	3	5	0	0	3
Course Objec	1	ate the students on the principles and process designs of various the	reat	men	t evet	ems
		r and wastewater and students should gain competency in the pro-			-	
		f treatment systems and the components comprising such systems				
	J	1 of specific process.	5, IC	aum	5 10 1	
Unit I	Introdu			1	10 He	ours
		treatment – significance – Principles of aerobic and anaerobic treatment	eatr			
		Factors affecting growth – attached and suspended growth - Deter.				
		organics removal – Biodegradability assessment -selection of pro				<mark>5-</mark>
batch-continuo						
Unit II	Aerobic	Treatment of Wastewater		1	10 Ho	nire
		nent plant units –Activated Sludge process and variations, Sequer	ncin			Juis
U	0	blogical Reactors-Trickling Filters-Bio Tower-RBC-Moving Bed		0		
		erated lagoons, waste stabilization ponds – nutrient removal syste				
		tructed wet land – Disinfection – disposal options – reclamation a				ow
		raulic profile, recent trends.				
Unit III		bic Treatment of Wastewater			10 He	
		l growth, Design of units – UASB, up flow filters, Fluidized beds				
		rient removal systems – Flow chart, Layout and Hydraulic profile	e — 1	Recei		nds.
Unit IV	Cludge /				E TT.	
	<u> </u>	Treatment and Disposal				ours
•	lge manag	gement facilities, sludge thickening, sludge digestion, biogas gene			ludge	
dewatering (m	lge manag nechanical	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing			ludge	
dewatering (m ultimate residu	lge manag nechanical ue disposa	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances.		ants	ludge –	2
dewatering (m ultimate residu Unit V	lge manag nechanical ue disposa	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Iction Operations and Maintenance Aspects	g pl	ants	ludge 10 H o	2
dewatering (m ultimate residu Unit V Construction a	lge manag nechanical ue disposa Constru and Opera	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects tional Maintenance problems – Trouble shooting – Planning, Org	g pl gani	ants zing	ludge – 10 H o and	ours
dewatering (m ultimate residu Unit V Construction a controlling of	lge manag nechanical ue disposa Constru and Opera plant oper	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects tional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra-	g pl gani	ants zing	ludge – 10 H o and	ours
dewatering (m ultimate residu Unit V Construction a	lge manag nechanical ue disposa Constru and Opera plant oper	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects tional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra- ilities.	g pl gani	ants zing ment	ludge – 10 H and plant	ours s –
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage	lge manag nechanical ue disposa Constru and Opera plant oper ement faci	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects tional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra-	g pl gani	ants zing ment	ludge – 10 H o and	ours s –
dewatering (m ultimate residu Unit V Construction a controlling of	lge manag nechanical ue disposa Constru and Opera plant oper ement faci	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects tional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra- ilities. Total:	g pl gani	ants zing ment	ludge – 10 H and plant	burs S –
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage	lge manag nechanical ue disposa Constru and Opera plant oper ement faci omes:	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects Itional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tr ilities. Total: Interval 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	g pl gani eati	ants zing ment	ludge and plant 45 He	burs S –
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage	lge manag nechanical ue disposa Constru and Opera plant oper ement faci omes: After co 1. Dev	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects tional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra- ilities. Total:	g pl gani eati	ants zing ment	ludge and plant 45 He	burs S –
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage	lge manag nechanical ue disposa Constru and Opera plant oper ement faci omes: After co 1. Dev	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects Itional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra- ilities. Total: mpletion of the course, Student will be able to elop conceptual schematics required for biological treatment of w	g pl gani eati	ants zing ment	ludge and plant 45 He	burs S –
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage Course Outco References:	lge manag nechanical ue disposa Constru and Opera plant oper ement faci omes: After co 1. Dev 2. Tran	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects Itional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra- ilities. Total: mpletion of the course, Student will be able to elop conceptual schematics required for biological treatment of w	g pl	ants zing ment ewat	ludge - and plant 45 Ho er	ours
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage Course Outco References: 1. Arceivala, 2000. 2. Manual o	lge manag nechanical ue disposa Constru and Opera plant oper ement faci omes: After co 1. Dev 2. Tran , S.J., Wa	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Interion Operations and Maintenance Aspects Itional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra- ilities. Total: mpletion of the course, Student will be able to elop conceptual schematics required for biological treatment of we nslate pertinent criteria into system requirements. astewater Treatment for Pollution Control, TMH, New Delhi, erage and Sewage Treatment" CPHEEO, Ministry of Urba	g pl gani eatr vast Se	ants zing ment ewat	ludge - and plant 45 Ho er Edit	e ours
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage Course Outco References: 1. Arceivala, 2000. 2. Manual o Governme	lge manag lge manag nechanical ue disposa Constru and Opera plant oper ement faci omes: After co 1. Dev. 2. Tran , S.J., Wa on "Sewee ent of Indi	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects Itional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra- ilities. Total: mpletion of the course, Student will be able to elop conceptual schematics required for biological treatment of we astewater Treatment for Pollution Control, TMH, New Delhi, erage and Sewage Treatment" CPHEEO, Ministry of Urba a, New Delhi, 1999.	g pl gani eatr /ast Se	ants zing ment ewat cond	er	e ours ours cion,
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage Course Outco Course Outco References: 1. Arceivala, 2000. 2. Manual o Governme 3. Metcalf &	lge manag lge manag lge manag lge manag lge manag Constru and Opera plant oper ement faci Domes: After co 1. Deve 2. Tran 5. J., Wa Don "Sewe ent of Indi 2. Eddy, II	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects Itional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tro- ilities. Total: mpletion of the course, Student will be able to elop conceptual schematics required for biological treatment of w nslate pertinent criteria into system requirements. astewater Treatment for Pollution Control, TMH, New Delhi, erage and Sewage Treatment" CPHEEO, Ministry of Urba a, New Delhi, 1999. NC, "Wastewater Engineering – Treatment and Reuse, Fourth I	g pl gani eatr /ast Se	ants zing ment ewat cond	er	e ours ours cion,
dewatering (m ultimate residu Unit V Construction a controlling of sludge manage Course Outco Course Outco References: 1. Arceivala, 2000. 2. Manual o Governme 3. Metcalf & Graw-Hill	lge manag nechanical ue disposa Constru and Opera plant oper ement faci omes: After co 1. Dev 2. Tran , S.J., Wa on "Sewe ent of Indi z Eddy, It Publishir	gement facilities, sludge thickening, sludge digestion, biogas gene and gravity) Layout, PID, hydraulics profile – upgrading existing al – recent advances. Inction Operations and Maintenance Aspects Itional Maintenance problems – Trouble shooting – Planning, Org rations – capacity building - Retrofitting Case studies – sewage tra- ilities. Total: mpletion of the course, Student will be able to elop conceptual schematics required for biological treatment of we astewater Treatment for Pollution Control, TMH, New Delhi, erage and Sewage Treatment" CPHEEO, Ministry of Urba a, New Delhi, 1999.	g pl gani eati /ast /ast Se un Edi	ants zing ment ewat cond Deve tion,	Iudge	e ours s – ours tion, aent, Mc

Course Objectives:30Course Objectives:To impart knowledge on the principles and design of control of indoor/particulate/gaseous air pollutant and its emerging trendsUnit IIntroductionStructure and composition of Atmosphere – Sources and classification of air pollutants - Effects of airPollutants on human health, vegetation & animals, Materials & Structures – Effects of airPollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Global CLChange, Ozone Holes – Ambient Air Quality and Emission Standards – Air Pollution Indices – EInventories – Ambient and Stack Sampling and Analysis of Particulate and Gaseous Pollutants.	imate
To impart knowledge on the principles and design of control of indoor/particulate/gaseous air pollutant and its emerging trends Unit I Introduction Structure and composition of Atmosphere – Sources and classification of air pollutants - Effects of pollutants on human health, vegetation & animals, Materials & Structures – Effects of air Pollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Global Cl Change, Ozone Holes – Ambient Air Quality and Emission Standards – Air Pollution Indices – E	of air imate
To impart knowledge on the principles and design of control of indoor/particulate/gaseous air pollutant and its emerging trends Unit I Introduction Structure and composition of Atmosphere – Sources and classification of air pollutants - Effects of pollutants on human health, vegetation & animals, Materials & Structures – Effects of air Pollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Global Classification Standards – Air Pollution Indices – E	of air imate
indoor/particulate/gaseous air pollutant and its emerging trends Unit I Introduction Structure and composition of Atmosphere – Sources and classification of air pollutants - Effects of air pollutants on human health, vegetation & animals, Materials & Structures – Effects of air Pollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Global Classification Standards – Air Pollution Indices – Effects	of air imate
Unit I Introduction Structure and composition of Atmosphere – Sources and classification of air pollutants - Effects of pollutants on human health, vegetation & animals, Materials & Structures – Effects of air Pollutants on human health, vegetation & animals, Materials & Structures – Effects of air Pollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Global Cl Change, Ozone Holes – Ambient Air Quality and Emission Standards – Air Pollution Indices – E	of air imate
Structure and composition of Atmosphere – Sources and classification of air pollutants - Effects of pollutants on human health, vegetation & animals, Materials & Structures – Effects of air Pollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Global Cl Change, Ozone Holes – Ambient Air Quality and Emission Standards – Air Pollution Indices – E	of air imate
pollutants on human health, vegetation & animals, Materials & Structures – Effects of air Pollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Global Cl Change, Ozone Holes – Ambient Air Quality and Emission Standards – Air Pollution Indices – E	imate
Pollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Global Cl Change, Ozone Holes – Ambient Air Quality and Emission Standards – Air Pollution Indices – E	
Change, Ozone Holes – Ambient Air Quality and Emission Standards – Air Pollution Indices – E	
	mission
Inventories – Ambient and Stack Sampling and Analysis of Particulate and Gaseous Pollutants.	111551011 1
Unit II Air Pollution Modelling	5 Hours
Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind	
and stack plume patterns- Transport & Dispersion of Air Pollutants - Modeling Techniques - Air	
Pollution Climatology.	
Unit III Control Of Particulate Contaminants 1	1 Hours
Factors affecting Selection of Control Equipment - Gas Particle Interaction, - Working principle,	Design
and performance equations of Gravity Separators (cyclone), Centrifugal separators Fabric filters,	-
Particulate Scrubbers, Electrostatic Precipitators - Operational Considerations - Process Control a	ınd
Monitoring – Costing of APC equipment – Case studies for stationary and mobile sources.	
	1 Hours
Factors affecting Selection of Control Equipment - Working principle, Design and performance e	
of absorption, Adsorption, condensation, Incineration, Bio scrubbers, Bio filters - Process control	
Monitoring - Operational Considerations - Costing of APC Equipment - Case studies for stational	ry and
mobile sources.	
	1 Hours
Sources types and control of indoor air pollutants, sick building syndrome types - Radon Pollution	ts of
control - Membrane process - UV photolysis - Internal Combustion Engines - Sources and Effec	
control – Membrane process - UV photolysis – Internal Combustion Engines - Sources and Effec Noise Pollution – Measurement – Standards –Control and Preventive measures.	5 Hours
control – Membrane process - UV photolysis – Internal Combustion Engines - Sources and Effec Noise Pollution – Measurement – Standards –Control and Preventive measures. Total: 4	5 Hours
control – Membrane process - UV photolysis – Internal Combustion Engines - Sources and Effec Noise Pollution – Measurement – Standards –Control and Preventive measures. Total: 4 Course Outcomes:	5 Hours
control – Membrane process - UV photolysis – Internal Combustion Engines - Sources and Effec Noise Pollution – Measurement – Standards –Control and Preventive measures. Total: 4 Course Outcomes: 4 After completion of the course, Student will be able to 4	5 Hours
control – Membrane process - UV photolysis – Internal Combustion Engines - Sources and Effec Noise Pollution – Measurement – Standards –Control and Preventive measures. Total: 4 Course Outcomes: After completion of the course, Student will be able to 1. Apply sampling techniques	5 Hours
control – Membrane process - UV photolysis – Internal Combustion Engines - Sources and Effect Noise Pollution – Measurement – Standards –Control and Preventive measures. Total: 4 Course Outcomes: 4 After completion of the course, Student will be able to 4	

2102EV202		INDUSTRIAL WASTE MANAGEMENT L	Т	Р	C
		3	0	0	3
Course Objec	1				
	-	art knowledge on the concept and application of Industrial pollution	-		n,
		technologies, industrial wastewater treatment and residue manage	ment.		
Unit I	Introdu				ours
		lia– Industrial activity and Environment - Uses of Water by indust			<mark>S</mark>
• •		astewater – Nature and Origin of Pollutants - Industrial wastewate			
	-	Regulatory requirements for treatment of industrial wastewater –			
		l wastewater monitoring and sampling -generation rates, character		on and	
variables –Tox	kicity of in	dustrial effluents and Bioassay tests – Major issues on water quali	<mark>ity</mark>		
management.					
Unit II	Inducto	ial Pollution Prevention & Waste Minimisation		<u>е п</u>	ours
		of Industrial Pollution – Benefits and Barriers – Waste management	nt Hid		
		jues – Periodic Waste Minimisation Assessments – Evaluation of			y -
		st benefit analysis – Pay-back period – Implementing & Promotin			
Prevention Pro			- <u>6</u> - 01	iution	
Unit III	<u> </u>	ial Wastewater Treatment		10 H	oure
	Indust				ours
Flow and Load			lizati		Juis
	l Equaliza	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra		on –	<u>our s</u>
Removal of Ind	l Equaliza organic C	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho	ospho	on – rous	
Removal of Ind removal, Ion e	l Equaliza organic C xchange,	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation –	ospho Remo	on – rous oval of	
Removal of Ind removal, Ion en Organic Const	l Equaliza organic C xchange, ituents – l	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho	ospho Remo	on – rous oval of	
Removal of Inc removal, Ion en Organic Const	1 Equaliza organic C xchange, ituents – 1 cesses – T	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad	ospho Remo	on – rous oval of ed	
Removal of Incremoval, Ion en Organic Const Oxidation proc Unit IV	1 Equaliza organic C xchange, ituents – 1 cesses – T Wastev	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies.	ospho Remo Ivanco	on – rous oval of ed	
Removal of Ind removal, Ion ex Organic Const Oxidation proc Unit IV Individual and	d Equaliza organic C xchange, ituents – I cesses – T Wastev Common	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. vater Reuse and Residual Management	ospho Remo Ivanco lestic	on – rous oval of ed 9 H e	ours
Removal of Incremoval, Ion ex Organic Const Oxidation proc Unit IV Individual and wastewater - Z	d Equaliza organic C xchange, ituents – l cesses – T Wastev Common Zero efflue	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Vater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom	ospho Remo lvanco lestic e – Inc	on – rous oval of ed 9 H e lustria	ours
Removal of Incremoval, Ion en Organic Const Oxidation proc Unit IV Individual and wastewater - Z reuse, Present	d Equaliza organic C xchange, ituents – l cesses – T Wastev Common Zero efflue status and	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Vater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse	ospho Remo lvance lestic e – Ind	on – rous oval of ed 9 H a lustria er	ours
Removal of Incremoval, Ion ex Organic Const Oxidation proc Unit IV Individual and wastewater - Z reuse, Present treatment – Qu	d Equaliza organic C xchange, ituents – I cesses – T Wastev Common Zero efflue status and antificatio	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Vater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse I issues - Disposal on water and land – Residuals of industrial was	ospho Remo lvance lestic e – Ind	on – rous oval of ed 9 H a lustria er	ours
Removal of Incremoval, Ion en Organic Const Oxidation proc Unit IV Individual and wastewater - Z reuse, Present treatment – Qu and disposal of	d Equaliza organic C xchange, ituents – I cesses – T Wastev Common Zero efflue status and antificatio	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Fater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, conditior Management of RO rejects.	ospho Remo lvance lestic e – Ind	on – rous oval of ed 9 H a lustria er	ours l ering
Removal of Incremoval, Ion en Organic Consti Oxidation proc Unit IV Individual and wastewater - Z reuse, Present treatment – Qu and disposal of Unit V	d Equaliza organic C xchange, ituents – I cesses – T Wastev Common Zero efflue status and iantificatio f sludge – Case St	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Fater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, conditior Management of RO rejects.	estic e – Incostewan	on – rous oval of ed 9 H o lustria er dewate 10 H o	ours l ering ours
Removal of Incremoval, Ion en Organic Consti Oxidation proc Unit IV Individual and wastewater - Z reuse , Present treatment – Qu and disposal of Unit V Industrial man	d Equaliza organic C xchange, ituents – I cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Vater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse d issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies	ospho Remo lvance lvance nestic = – Ind stewat ning, o optio	on – rous oval of ed 9 H d lustria er dewate 10 H d ns and	ours l ours
Removal of Incremoval, Ion en Organic Constit Oxidation proc Unit IV Individual and wastewater - Z reuse , Present treatment – Qu and disposal of Unit V Industrial many waste treatment	d Equaliza organic C xchange, ituents – l cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing nt flow sho	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Vater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse d issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies g process description, wastewater characteristics, source reduction	ospho Remo lvance lvance nestic = – Ind stewat ning, o optio	on – rous oval of ed 9 H d lustria er dewate 10 H d ns and	ours 1 ours
Removal of Incremoval, Ion ex Organic Const Oxidation proc Unit IV Individual and wastewater - Z reuse , Present treatment – Qu and disposal of Unit V Industrial many waste treatment	d Equaliza organic C xchange, ituents – l cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing nt flow sho	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. 7ater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse I issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies g process description, wastewater characteristics, source reduction eet for Textiles – Tanneries – Pulp and paper – metal finishing – C and Distilleries	ospho Remo lvance lvance nestic = – Ind stewat ning, o optio	on – rous oval of ed 9 H a lustria dewate 10 H a ns and fining	ours l ours l –
Removal of Incremoval, Ion en Organic Consti Oxidation proc Unit IV Individual and wastewater - Z reuse , Present treatment – Qu and disposal of Unit V Industrial many waste treatment Pharmaceutica	d Equaliza organic C xchange, ituents – I cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing t flow she ils – Sugar	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Vater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse d issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies g process description, wastewater characteristics, source reduction wet for Textiles – Tanneries – Pulp and paper – metal finishing – C	ospho Remo lvance lvance nestic = – Ind stewat ning, o optio	on – rous oval of ed 9 H d lustria er dewate 10 H d ns and	ours l ours l –
Removal of Incremoval, Ion en Organic Consti Oxidation proc Unit IV Individual and wastewater - Z reuse , Present treatment – Qu and disposal of Unit V Industrial many waste treatment Pharmaceutica	d Equaliza organic C xchange, ituents – I cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing t flow sho ils – Sugar	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Vater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse d issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies g process description, wastewater characteristics, source reduction eet for Textiles – Tanneries – Pulp and paper – metal finishing – C and Distilleries Total:	ospho Remo lvance lvance nestic = – Ind stewat ning, o optio	on – rous oval of ed 9 H a lustria dewate 10 H a ns and fining	ours l ours l –
Removal of Incremoval, Ion en Organic Const Oxidation proc Unit IV Individual and wastewater - Z reuse , Present treatment – Qu and disposal of Unit V Industrial many waste treatment	d Equaliza organic C xchange, ituents – I cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing t flow sho ils – Sugar	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal, Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. 7 ater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse d issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies g process description, wastewater characteristics, source reduction set for Textiles – Tanneries – Pulp and paper – metal finishing – C and Distilleries Total:	ospho Remo lvance lvance e – Ind stewar ning, o optio Dil Re	on – rous oval of ed 9 H dustria dewate 10 H fining 45 H	ours 1 ours 1 -
Removal of Incremoval, Ion en Organic Consti Oxidation proc Unit IV Individual and wastewater - Z reuse, Present treatment – Qu and disposal of Unit V Industrial many waste treatment Pharmaceutica	d Equaliza organic C xchange, ituents – 1 cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing t flow she ils – Sugar	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Pater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse d issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies g process description, wastewater characteristics, source reduction eet for Textiles – Tanneries – Pulp and paper – metal finishing – C and Distilleries Total:	ospho Remo lvance lvance e – Ind stewar ning, o optio Dil Re	on – rous oval of ed 9 H dustria dewate 10 H fining 45 H	ours 1 ours 1 -
Removal of Incremoval, Ion en Organic Consti Oxidation proc Unit IV Individual and wastewater - Z reuse , Present treatment – Qu and disposal of Unit V Industrial many waste treatment Pharmaceutica	d Equaliza organic C xchange, ituents – 1 cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing t flow sho dls – Sugar mes: After co 1. Def 2. Sug	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. rater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse d issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies g process description, wastewater characteristics, source reduction evet for Textiles – Tanneries – Pulp and paper – metal finishing – C and Distilleries Total:	ospho Remo lvance lvance e – Ind stewar ning, o optio Dil Re	on – rous oval of ed 9 H dustria dewate 10 H fining 45 H	ours
Removal of Incremoval, Ion en Organic Consti Oxidation proc Unit IV Individual and wastewater - Z reuse , Present treatment – Qu and disposal of Unit V Industrial many waste treatment Pharmaceutica	d Equaliza organic C xchange, ituents – 1 cesses – T Wastev Common Zero efflue status and antificatio f sludge – Case St ufacturing t flow sho dls – Sugar mes: After co 1. Def 2. Sug	tion – Solids Separation – Removal of Fats, Oil & Grease- Neutra onstituents – Precipitation, Heavy metal removal , Nitrogen & Pho Adsorption, Membrane Filtration, Eletrodialysis & Evaporation – Biological treatment Processes, Chemical Oxidation Processes, Ad reatability Studies. Pater Reuse and Residual Management Effluent Treatment Plants – Joint treatment of industrial and dom nt discharge systems - Quality requirements for Wastewater reuse d issues - Disposal on water and land – Residuals of industrial was on and characteristics of Sludge – Thickening, digestion, condition Management of RO rejects. udies g process description, wastewater characteristics, source reduction eet for Textiles – Tanneries – Pulp and paper – metal finishing – C and Distilleries Total:	ospho Remo lvance lvance e – Ind stewar ning, o optio Dil Re	on – rous oval of ed 9 H dustria dewate 10 H fining 45 H	ours l ours l ours

2103EV007		SOLID AND HAZARDOUS WASTE MANAGEMENT	L	Т	Р	С
2103E \ 007		SOLID AND HAZARDOUS WASTE MANAGEMENT	3	0	0	3
Course Objec	tives:		U	v	v	
e e e e e e e e e e e e e e e e e e e	1	part knowledge and skills in the collection, storage, transport, tr	eatme	ent, d	ispos	al
		cycling options for solid wastes including the related engineerir			•	
		a, methods and equipment.	01	1	,	U
Unit I		es, Classification and Regulatory Framework			9 H	ours
Types and Sou		solid and hazardous wastes - Need for solid and hazardous was	aste n	nanag	gemer	nt
Salient feature	s of Indi	an legislations on management and handling of municipal soli	d was	stes, ł	nazaro	lous
wastes, biome	dical wa	stes, nuclear wastes - lead acid batteries, electronic wastes, p	lastics	s and	fly a	sh –
		d waste management and roles of stakeholders - Financing			-	
Participation for	-					
-						
Unit II		Characterization and Source Reduction	1		<u>8 Ноі</u>	
		and variation - Composition, physical, chemical and biologica				
		haracteristics – TCLP tests – waste sampling and characteriz Vaste exchange - Extended producer responsibility - Recycling			- 50	urce
Unit III		ge, Collection and Transport Of Wastes			9 Hoi	ire
		tion of wastes at source – storage and collection of munic	inal (
•	00	systems - Need for transfer and transport – Transfer station	-			
		ity, storage, labeling and handling of hazardous wastes – hazard				
and transport.	1					
Unit IV	Waste	e Processing Technologies		1	10 Ha	ours
Objectives of	waste j	processing - material separation and processing technologie	s – 1	biolo	gical	and
chemical con-	version	technologies - methods and controls of Composting -	therm	al c	onver	sion
technologies a	nd energ	gy recovery – incineration – solidification and stabilization of	haza	rdous	was	tes -
treatment of bi	omedica	al wastes - Health considerations in the context of operation of	f facil	ities,	hand	ling
of materials an	d impac	t of outputs on the environment.				
Unit V	Waste	e Disposal		ļ	9 Ног	irs
		s - Disposal in landfills - Landfill Classification, types and met				
		of sanitary landfills, secure landfills and landfill bioreactors -				
• •		ndfill closure and environmental monitoring - Rehabilitation	1 of o	open	dumj	<u>os</u> –
landfill remedi	ation.					
		Tot	al:		45 He	ours
Course Outco	mes:					
	After	completion of the course, Student will be able to				
		nderstand the characteristics of different types of solid and ha	zardo	ous w	astes	and
		e factors affecting variation				
		efine and explain important concepts in the field of solid was		-		
		ggest suitable technical solutions for treatment of municipal and				
		nderstand the role legislation and policy drivers play in stake				
		e waste and apply the basic scientific principles for solvi	ng p	ractic	cal w	aste
	m	anagement challenges				

		ENVIRONMENTAL IMPACT ASSESSMENT	L	Т	Р	С
			3	0	0	3
Course Objective						
		To expose the students to the need, methodology, documentation				
	(of environmental impact assessment and to develop the	skil	l to	pre	pare
	e	environmental management plan.				
	2.	Fo provide knowledge related to the broad field of environmenta	al ris	sk ass	sessm	ent,
	i	mportant processes that control contaminant transport and tools	ls tha	at cai	ı be ı	ised
	i	n predicting and managing human health risks.				
Unit I		oduction			8 Ho	ours
Historical develop		of Environmental Impact Assessment (EIA). EIA in Project Cyc	cle. L	egal		
		dia. – Types and limitations of EIA –.EIA process- screening – s				1g —
		oss sectoral issues and terms of reference in EIA – Public Partic	•	~		~
			•			
Unit II		act Identification and Prediction			<u>10 Ho</u>	
		Checklists – Cost benefit analysis – Analysis of alternatives – Sol				
		s in EIA. Prediction tools for EIA – Mathematical modeling for				tion
Unit III		s – air – water – soil – noise – biological — Cumulative Impact	Asse	essine		
		al Impact Assessment and EIA Documentation tt - Relationship between social impacts and change in communi	·		8 Ho	ours
of EIA findings –		ts. Individual and family level impacts. Communities in transition ng – organization of information and visual display materials –				
preparation.	plaini	ng – organization of information and visual display materials –		ort		
preparation. Unit IV	-	ronmental Management Plan		ort	7 He	ours
Unit IV Environmental M	Envi anager	ronmental Management Plan nent Plan - preparation, implementation and review – Mitigatior	Repo	1		
Unit IV Environmental M Rehabilitation Pla	Envi anager	Fronmental Management Plan nent Plan - preparation, implementation and review – Mitigation olicy and guidelines for planning and monitoring programmes –	Repo	1		
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua	Envi Eanager ans – Pe ality as	Fronmental Management Plan nent Plan - preparation, implementation and review – Mitigatior olicy and guidelines for planning and monitoring programmes – pects of Environmental Impact Assessment- Case Studies.	Repo	1 t pro	ject a	udit
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua Unit V	Envi anager ans – Pe ality as Envi	ronmental Management Plan nent Plan - preparation, implementation and review – Mitigation olicy and guidelines for planning and monitoring programmes – pects of Environmental Impact Assessment- Case Studies. ironmental Risk Assessment and Management	Repo n and - Pos	1 t pro	ject a 12 Ho	udit ours
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua Unit V Environmental ris Assessment – Exp methods – Event to contaminant- Risk	Envi anager ans – P dlity as Envi sk asses posure tree an k Chara	Fronmental Management Plan nent Plan - preparation, implementation and review – Mitigatior olicy and guidelines for planning and monitoring programmes – pects of Environmental Impact Assessment- Case Studies.	Repo n and - Pos lation nd FI node	$\frac{1}{1}$ t pro	ject a 12 Ho xposu	udit ours ire
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua Unit V Environmental ris Assessment – Exp methods – Event	Envi anager ans – P dlity as Envi sk asses posure tree an k Chara	ronmental Management Plan nent Plan - preparation, implementation and review – Mitigation olicy and guidelines for planning and monitoring programmes – pects of Environmental Impact Assessment- Case Studies. ronmental Risk Assessment and Management ssment framework-Hazard identification -Dose Response Evalua Factors, Tools for Environmental Risk Assessment– HAZOP and d fault tree analysis – Multimedia and multipathway exposure macterization Risk communication - Emergency Preparedness Plan	Repo n and - Pos ation nd FI node	$\frac{1}{1}$ t pro 1 - E EMA ling of Desig	ject a 12 H xposu of gn of	udit ours ire risk
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua Unit V Environmental ris Assessment – Exp methods – Event t contaminant- Risk management prog	Envi anager ans – Pe lity as Envi sk asses posure tree an k Chara grams.	ronmental Management Plan nent Plan - preparation, implementation and review – Mitigation olicy and guidelines for planning and monitoring programmes – pects of Environmental Impact Assessment- Case Studies. ronmental Risk Assessment and Management ssment framework-Hazard identification -Dose Response Evalua Factors, Tools for Environmental Risk Assessment– HAZOP an d fault tree analysis – Multimedia and multipathway exposure m	Repo n and - Pos ation nd FI node	$\frac{1}{1}$ t pro 1 - E EMA ling of Desig	ject a 12 Ho xposu	udit ours ire risk
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua Unit V Environmental ris Assessment – Exp methods – Event to contaminant- Risk	Envi anager ans – Pe dity as Envi sk asse: posure tree an k Chara grams.	ronmental Management Plan nent Plan - preparation, implementation and review – Mitigation olicy and guidelines for planning and monitoring programmes – pects of Environmental Impact Assessment- Case Studies. fronmental Risk Assessment and Management ssment framework-Hazard identification -Dose Response Evalua Factors, Tools for Environmental Risk Assessment– HAZOP and d fault tree analysis – Multimedia and multipathway exposure macterization Risk communication - Emergency Preparedness Plan Total	Repo n and - Pos ation nd FI node	$\frac{1}{1}$ t pro 1 - E EMA ling of Desig	ject a 12 H xposu of gn of	udit ours ire risk
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua Unit V Environmental ris Assessment – Exp methods – Event t contaminant- Risk management prog	Envi anager ans – Pe ality as Envi sk asses posure tree an k Chara grams.	ronmental Management Plan nent Plan - preparation, implementation and review – Mitigation olicy and guidelines for planning and monitoring programmes – pects of Environmental Impact Assessment- Case Studies. ronmental Risk Assessment and Management ssment framework-Hazard identification -Dose Response Evalua Factors, Tools for Environmental Risk Assessment– HAZOP and d fault tree analysis – Multimedia and multipathway exposure m acterization Risk communication - Emergency Preparedness Plan Totals r completion of the course, Student will be able to	Repo	1 t pro t pro EMA ling o Desig	ject a 12 He xposu of gn of 45 He	udit ours rre risk
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua Unit V Environmental ris Assessment – Exp methods – Event t contaminant- Risk management prog	Envi anager ans – Pe dity as Envi sk asses posure tree an k Chara grams.	Total:	Repo n and - Pos aation nd FI node ins –] l:	1 t pro t pro EMA ling o Desig	ject a 12 He xposu of gn of 45 He	udit ours rre risk
Unit IV Environmental M Rehabilitation Pla – Ethical and Qua Unit V Environmental ris Assessment – Exp methods – Event t contaminant- Risk management prog	Envi anager ans – Pe ality as Envi sk asses posure tree an k Chara grams.	ronmental Management Plan nent Plan - preparation, implementation and review – Mitigation olicy and guidelines for planning and monitoring programmes – pects of Environmental Impact Assessment- Case Studies. ronmental Risk Assessment and Management ssment framework-Hazard identification -Dose Response Evalua Factors, Tools for Environmental Risk Assessment– HAZOP and d fault tree analysis – Multimedia and multipathway exposure m acterization Risk communication - Emergency Preparedness Plan Totals r completion of the course, Student will be able to	Repo n and - Pos ation nd FI node ans –] I:	t pro t pro EMA ling o Desig	ject a 12 Ho xposu of gn of 45 Ho auseo	udit ours risk ours

2102EV203	UNIT OPERATIONS AND PROCESSES	L	Τ	Р	C
	LABORATORY				
		0	0	2	1
Course Obje					
	1. To develop the skill for conducting Treatability studies o				
	treatment by various Unit Operations and Processes using la				
	2. To develop the skill for conducting Treatability studies o				
	treatment by various Unit Operations and Processes using la	boratory :	scale	mode	els.
List of Exper					
0	on and Flocculation				
	dies on settling				
	n Filtration- Characteristics of Filter media				
4. Water sof					
5. Adsorptic	on studies/Kinetics				
	Osmosis- Silt Density Index				
7. Kinetics of	of suspended growth process (activated sludge process)- Sludge volu	me Index			
8. Anaerobio	c Reactor systems / kinetics (Demonstration)				
9. Advanced	l Oxidation Processes – (Ozonation, Photocatalysis)				
10. Disinfecti	on for Drinking water				
		To	tal	45 H	ours
			:		
Course Outc					
	After completion of the course, Student will be able to				
	1. Conduct treatability studies for water and waste water treatm				
	2. Design laboratory models for various unit operations and pro-	ocesses.			
References:					
1. Metcalf a	nd Eddy. Inc. "Wastewater Engineering, Treatment, Disposal and	1 Reuse,	Thir	d Edi	tion,
Tata McC	Fraw Hill Publishing Company Limited, New Delhi, 2003.				
2. Lee, C.C.	and Shun dar Lin. Handbook of Environmental Engineering Calc	ulations,	Mc (Graw	Hill,
New Yorl					í
	J., Unit Treatment Processes in Water and Wastewater Engineer	ing John	Wil	evs S	lons
London, 1		ing, 30iii	** 11	cyb c	, 0113,
		· 100 CT			
4. David W	Hendricks, "Water Treatment Unit Processes: Physical and Chem	ical``, CR	C Pr	ess, I	Boca
Raton, 20					

2103EV020		ENVIRONMENTAL POLICIES AND LEGISLATION	L	Т	Р	С
			3	0	0	3
Course Objec						
		npart knowledge on the policies, legislations, institutional fram	e worl	k and		
		cement mechanisms for environmental management in India.				
Unit I		oduction			9 H	ours
		and Environmental Protection – National Environmental	•		_	
	-	e and Polluter Pays Principle – Concept of absolute liability – n				
	•	ents and Protocols – Montreal Protocol, Kyoto agreement, Rio	decla	ratior	1 —	
		ion Act, Water (P&CP) Act, Air (P&CP) Act – Institutional				
framework(SP	CB/CPC	CB/MoEF)				
Unit II	Wate	er (P&CP) Act, 1974			8 H	ours
Power & funct		regulatory agencies - responsibilities of Occupier Provision rela	ting to	o prev		
		Consent to establish, Consent to operate – Conditions of the co	-	-		
Legal sampling	g proced	lures, State Water Laboratory – Appellate Authority – Penalties	for v	iolati	on of	
consent conditi	ions etc.	Provisions for closure/directions in apprehended pollution situ	lation			
TT •4 TTT				-	0.11	
Unit III		P&CP) Act, 1981	<u></u>		8 H	
		regulatory agencies - responsibilities of Occupier Provision rela				
		Consent to establish, Consent to operate – Conditions of the co				_
		lures, State Air Laboratory – Appellate Authority – Penalties f			ı of	
consent conditi	ions etc.	Provisions for closure/directions in apprehended pollution situ	lation			
Unit IV	Envi	ronment (Protection) Act 1986			13 H	ours
		elegation of powers – Role of Central Government - EIA Notifi	catior			
		one Regulation - Responsibilities of local bodies mitigation			-	
Municipal Soli	d Waste	e Management - Responsibilities of Pollution Control Boards u	nder I	Hazar	dous	
-		f occupier, authorization – Biomedical waste rules – responsibil				rs
and role of Pol	lution C	Control Boards		-		
T T •4 T 7					7 II	
Unit V		e <mark>r Topics</mark> Stadiog Forget Act. Dublig Lighility Ingungan Act. CrDC, IDC,	D.,1,12	. Tuto	7 H	ours
		Indian Forest Act, Public Liability Insurance Act, CrPC, IPC -	Public	2 Inte	rest	
Liugation - Wi	n peuto	ons - Supreme Court Judgments in Landmark cases.				
		Tot	tal:		45 H	ours
Course Outco	mes:		<u> </u>			
	After	completion of the course, Student will be able to				
	1. F	Know the National environmental legislations and the policies				
		lan programmes to comply with the legal requirements related	to org	ganiza	ations	3