BE CIVIL ENGINEERING

1902CE401	BUILDING MATERIALS AND MANAGEMENT	L	Т	Р	С	
		3	0	0	3	
UNIT I	BUILDING MATERIALS			9 Ho	urs	
Lime, Brick, T	imber and its Products, Floor and Wall Tiles, Pozzolanas, Ferrous meta	ls, Ther	mal I	nsulat	tion	
	ing Materials: Glass, Timber, Aluminum, Plastics, Paints, Varnishes, Dis					
	fing Materials, Ferrocement and its application, Fabre textiles - Geo mem	oranes as	nd Ge	otext	iles	
for earth reinfor			1	<u> </u>		
UNIT II	BUILDING COMPONENTS			9 Ho	urs	
	Partition wall and Cavity wall, Composite Masonry, Doors, Windows, Ventilators, Stairs, Lift, Ramps,					
	Escalators, Anti Termite Treatment, Brick masonry-Bond- Jointing-Stone masonry					
	Temporary building structures - Site Clearance - Marking –Earthwork, Slip and moving forms, scaffolding, Plumbing and Sanitation, Fire Protection, Introduction to Building Maintenance, Acoustics and Sound					
Insulation.	annation, Fire Protection, introduction to Building Maintenance, Acoustic	s and So	ouna			
UNIT III	SUB STRUCTURE AND SUPERSTRUCTURE TECHNIQUES			9 Ho	urs	
	box jacking- pipe jacking- under water construction of diaphragm walls and	1 basem		/ 110	uis	
	niques, caisson -sinking cofferdam, Dewatering and stand by plant equipm			round	1	
0	, Launching girders, bridge decks, off shore platforms, braced domes and		<u> </u>			
ÚNIT IV	CONSTRUCTION EQUIPMENTS			9 Ho	urs	
Selection of equ	ipment for earth work - types of earthwork equipment, Equipment for ma	erial har	ndling	and		
	ctures, Equipment for dredging, trenching, tunneling, Equipment for comp	action <mark>, b</mark>	atchir	ng and	1	
	creting, Equipment for foundation and pile driving.					
UNIT V	MANAGEMENT			9 Ho	urs	
	gement - Material Procurement and Delivery - Inventory Control - Tradeo	ffs of Co	osts in			
Materials Mana	-			5 II.		
	Tot		4	5 Ho	urs	
COURSE OUTCO	MES:					
1. Summari	ze the most common and advanced materials used for construction.					
	the construction process of various building components.					
-	he various construction methods and techniques involved in sub structure	-				
	he appropriate modern construction tools and equipment in various constru	iction ac	tivitie	es.		
	he appropriate method of management for materials.					
REFERENCE						
U	C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.					
	"Engineering Materials", S. Chand and Company Ltd., 2008.					
3.Gambhir.M.L.,	, "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 20	04				
4. Duggal.S.K.	4. Duggal.S.K., "Building Materials", 4th Edition, New Age International, 2008.					
~ ~ ~	5.Jagadish.K.S, "Alternative Building Materials Technology", New Age International, 2007.					
	, &NehaJamwal., "Building Materials, products, properties and system					
Tata McGraw Hi	ata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.					

1902CE505			ENVIRON	MENTAI	ENGINE	EERING		L	Т	Р	С
								3	0	0	3
Course Object											
			he water supp								
			ability to eval								em.
			tudents to ana						ldings	5.	
			d the importa					stem.			
	5.	Γo create an	ability to desi	gn the was	te water tre	atment syst	tem.				
	6.	۲o impart the	e signification	of disposa	l of Sewag	e.					
Unit I	WATER	SUPPLY S	<mark>YSTEMS – S</mark>	SOURCE .	AND CON	VEYANCI	E			9 H	ours
Objectives - Po	opulation fo	recasting - 1	Design period	l – Water d	lemand –Se	ources of w	ater – Sou	irce se	electio	on – W	Vater
quality parame	eters and sig	gnificance –	Standards – I	ntake struc	tures – Co	nveyance -	- Hydrauli	cs -	Layin	g, joir	nting
and testing of p											
Unit II			<mark>ES OF WA</mark> T							9 H	
Objectives - S											
disinfection –											
Demineralizati	on – Aerat	ion – Iron 1	removal – De	efluoridati	on – Opera	tion and n	naintenan	ce asp	pects	– Res	sidue
management.											
Unit III	DISTRI									9 H	
Requirements			Components -						atwor	k desi	ign ·
Analysis of dis	stribution ne										
	x 1 1		rdy cross me	thod – Equ	ivalent pip	e method -	Pipe App				
and maintenand		tection, Meth	rdy cross me lods. House s	thod – Equ ervice con	ivalent pip nection - Sy	e method - stems of pl	Pipe App lumbing.			-opera	atior
Unit IV	SEWER/	tection, Meth	rdy cross me ods. House s EM, COLLE	thod – Equ ervice con <mark>CTION A</mark>	ivalent pip nection - Sy ND TRAN	e method - stems of pl SMISSION	Pipe App lumbing. <mark>N</mark>	urtena	ances	-opera 9 H	ation ours
Unit IV Sources of was	SEWER stewater – 9	tection, Meth AGE SYSTI Quantity of a	rdy cross me ods. House s CM, COLLE sanitary sewa	thod – Equ ervice con CTION A ge – Storr	ivalent pip nection - Sy ND TRAN n runoff es	e method - ystems of pl SMISSION timation –	Pipe App lumbing. N Wastewat	er cha	ances	-opera 9 H ristics	ation ours and
Unit IV Sources of was significance –	SEWER A stewater – 0 Effluent di	tection, Meth AGE SYSTI Quantity of s sposal stand	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi	thod – Equ ervice con CTION A ge – Storr gn of sew	ivalent pip nection - Sy ND TRAN n runoff es	e method - ystems of pl SMISSION timation –	Pipe App lumbing. N Wastewat	er cha	ances	-opera 9 H ristics	ation ours and
Unit IV Sources of was significance – testing of sewe	SEWERA stewater – (Effluent di rs – Sewer a	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel	thod – Equ ervice con CTION A ge – Storr gn of sew ection.	ivalent pip nection - Syn ND TRAN n runoff es ers – Com	e method - ystems of pl SMISSION timation –	Pipe App lumbing. N Wastewat	er cha	ances	-opera 9 He ristics inting	ours and and
Unit IV Sources of was significance – testing of sewe Unit V	SEWERA stewater – (Effluent di rs – Sewer a SEWAG	tection, Metl AGE SYSTI Quantity of s sposal stand appurtenance E TREATM	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI	ivalent pip nection - S ND TRAN n runoff es ers – Com	e method - ystems of pl SMISSION timation – puter appli	Pipe App lumbing. N Wastewat cations –	er cha Layin	ances aracte ng, jo	-opera 9 He ristics inting 9 He	ours and and ours
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se	SEWERA stewater – 0 Effluent di rs – Sewer a SEWAG election of t	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design	ivalent pip nection - S ND TRAN n runoff es ers – Com principles o	e method - ystems of pl SMISSION timation – puter appli	Pipe App lumbing. N Wastewat cations –	er cha Layir	ances aracte ng, jo	-opera 9 He ristics inting 9 He ent, sc	ours and and ours ours
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of t chamber, pri	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSA1 – Design t, activated	ivalent pip nection - S ND TRAN n runoff es ers – Com principles o sludge pro	e method - ystems of pl SMISSION timation – puter appli of primary a cess – Aera	Pipe App lumbing. Wastewat cations – and second ation tank	er cha Layin lary ti and o	ances aracte ng, jo reatmo xidati	-opera 9 Ha ristics inting 9 Ha ent, sc ion dit	ation ours and and ours creer tch -
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of t chamber, pri –Stabilizati	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSA1 – Design t, activated	ivalent pip nection - S ND TRAN n runoff es ers – Com principles o sludge pro	e method - ystems of pl SMISSION timation – puter appli of primary a cess – Aera	Pipe App lumbing. Wastewat cations – and second ation tank	er cha Layin lary ti and o	ances aracte ng, jo reatmo xidati	-opera 9 Ha ristics inting 9 Ha ent, sc ion dit	ation ours and and ours creen
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm	SEWERA stewater – 0 Effluent di rs – Sewer 3 SEWAG election of to chamber, pri –Stabilizati ing.	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – S	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo	dary tr and o osal –	ances aracte ng, jo reatmo xidati Bioga	-opera 9 He ristics inting 9 He ent, sc ion dit s reco	ours and and ours reer tch -
Unit IV Sources of was significance – testing of sewer Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of u chamber, pri –Stabilizati ing. and – Disp	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – S	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo	dary tr and o osal –	ances aracte ng, jo reatmo xidati Bioga	-opera 9 He ristics inting 9 He ent, sc ion dit s reco	ours and and ours reen tch –
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of u chamber, pri –Stabilizati ing. and – Disp	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – S	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's	er cha Layin lary ti and o osal – mode	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours and and ours creen tch - vvery vater
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of u chamber, pri –Stabilizati ing. and – Disp chniques.	tection, Meth AGE SYSTI Quantity of sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – S	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo	er cha Layin lary ti and o osal – mode	ances aracte ng, jo reatmo xidati Bioga	-opera 9 He ristics inting 9 He ent, sc ion dit s reco	ours and and ours creen tch - vvery vater
Unit IV Sources of was significance – testing of sewer Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques.	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – s osal into w	andy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies –	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg sag curve	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's	er cha Layin lary ti and o osal – mode	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours anc anc ours creer tch - vvery vate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. mes: After con	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – s osal into w	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies –	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p – Oxygen dent will b	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg sag curve e able to	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Tot	urtena eer cha Layin dary ti and o osal – mode al:	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours anc anc ours creer tch - vvery vate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – C Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. Mes: After con 1. 1	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – s osal into w pletion of th Design the co	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies –	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated with soak p - Oxygen dent will b the transm	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludg sag curve e able to ission main	e method - vstems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Tot ter convey	er cha Layin dary ti and o osal – mode al:	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours anc anc ours creer tch - vvery vate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – 0 Effluent di rs – Sewer a SEWAG. election of u chamber, pri –Stabilizati ing. and – Disp chniques. mes: 1. 1 2. 1	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – s osal into w pletion of th Design the co Design the w	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design a, activated vith soak p - Oxygen dent will b the transm t units base	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main of on its pri-	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Tot ter convey	er cha Layin dary ti and o osal – mode al:	ances aracte ng, jo reatmo xidati Bioga	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev	ours and and ours creer tch - vvery vvate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of the chamber, pri- -Stabilization ing. and – Dispection chanques. Meter con 1. 1 2. 1 3. 1	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ton ponds – a osal into w pletion of the Design the co Design the w Extend the w	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- pmponents of ater treatmen ater distributi	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design a activated vith soak p - Oxygen dent will b the transm t units base on to the i	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main of on its pri- ndividual b	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions	dary tr and o osal – al:	ances aracte ng, jo reatmo xidati Bioga 1 – W	-opera 9 Ho ristics inting 9 Ho ent, sc on dit s reco Vastev 45 Ho	ours and and ours creer tch - vvery vvate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. Mest After con 1. 1 2. 1 3. 1 4. 1	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedimed ion ponds – a osal into w pletion of th Design the co Design the w Extend the w Build a sewe	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – <u>e course, Stu-</u> pmponents of ater treatmen ater distributi rage system b	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main od on its pri- ndividual b mation and	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions	al: ze of s	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. mes: After con 1. 1 2. 1 3. 1 4. 1 5. 1	tection, Meth AGE SYSTI Quantity of s sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – s osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- pmponents of ater treatmen ater distributi	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main od on its pri- ndividual b mation and	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions	al: ze of s	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours and and ours reen tch - vvery vater ours
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. mes: After con 1. 1 2. 1 3. 1 4. 1 5. 1	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedimed ion ponds – a osal into w pletion of th Design the co Design the w Extend the w Build a sewe	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – <u>e course, Stu-</u> pmponents of ater treatmen ater distributi rage system b	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main od on its pri- ndividual b mation and	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions	al: ze of s	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ancours ancours creer tch - overy vater
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcom	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of te chamber, pri –Stabilizati ing. and – Disp chniques. Mes: After con 1. 1 2. 1 3. 1 4. 1 5. 1 0	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – a osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t quantity.	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p - Oxygen dent will b the transm t units base on to the i y flow esti	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main d on its pri- ndividual b mation and treatment of	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing of waste w	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	al: ze of s	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ancours ancours creer tch - overy vater
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcon References: Garg, S.K., Em	SEWERA stewater – (Effluent di rs – Sewer a SEWAG election of the chamber, pri- –Stabilizati ing. and – Disp chniques. Mest: After con 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – 3 osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t quantity.	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni-	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p - Oxygen – Oxygen dent will b the transm t units base on to the i y flow esti ts for the	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main of on its pri- ndividual b mation and treatment of ners, New I	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and nildings designing of waste w Delhi, 2003	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ancours ancours creer tch - overy vater
Unit IV Sources of was significance – testing of sewe Unit V Objectives – So chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcon References: Garg, S.K., Em Punmia, B.C., 3	SEWERA stewater – 0 Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. Mese: After con 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental Jain, A.K., a	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – 3 osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t quantity.	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni-	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p - Oxygen – Oxygen dent will b the transm t units base on to the i y flow esti ts for the	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main of on its pri- ndividual b mation and treatment of ners, New I	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and nildings designing of waste w Delhi, 2003	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcon References: Garg, S.K., Em Punmia, B.C., Sources Newsletter, 200	SEWERA stewater – 0 Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. mes: After com 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental Jain, A.K., a 05	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – a osal into w pletion of th Design the co Design the w Extend the w Build a sewe Design the t quantity. Engineering and Jain.A., 1	rdy cross me nods. House s CM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- pmponents of ater treatmen ater distributi rage system b reatment unit	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti ts for the nna Publis al Engineer	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main id on its pri- ndividual b mation and treatment of ners, New I ing, Vol.II,	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and nildings designing of waste w Delhi, 2003 Lakshmi P	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcor Garg, S.K., Em Punmia, B.C., J Newsletter, 200 Manual on Sew	SEWERA stewater – 0 Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. mes: After com 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental Jain, A.K., a 05 verage and S	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – a osal into w pletion of th Design the co Design the w Build a sewe Design the t quantity. Engineering and Jain.A., 1 Sewage Trea	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment unit g Vol. II, Kha Environmenta	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti ts for the nna Publis al Engineer	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main id on its pri- ndividual b mation and treatment of ners, New I ing, Vol.II,	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and nildings designing of waste w Delhi, 2003 Lakshmi P	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot ter convey functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours and and ours creeer tch - overy vate
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcon Garg, S.K., Em Punmia, B.C., J Newsletter, 200 Manual on Sew Government of	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of the chamber, pri –Stabilizati ing. and – Disp chniques. mes: After com 1. 1 2. 1 3. 1 4. 1 5. 1 vironmental Jain, A.K., a 05 verage and S f India, New	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operatio mary sedime ion ponds – a osal into w pletion of th Design the co Design the w Build a sewe Design the t quantity. Engineering and Jain.A., 1 Sewage Trea 7 Delhi, 1997	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni- g Vol. II, Kha Environmenta	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti ts for the EO, Minis	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main ad on its pri- ndividual b mation and treatment of ners, New I ing, Vol.II, ry of Urba	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing of waste w Delhi, 2003 Lakshmi P n Developm	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates
Unit IV Sources of was significance – testing of sewe Unit V Objectives – Se chamber, grit c Trickling filter – Sewage farm Disposal on la reclamation tec Course Outcor Garg, S.K., Em Punmia, B.C., J Newsletter, 200 Manual on Sew	SEWERA stewater – G Effluent di rs – Sewer a SEWAG election of tr hamber, pri –Stabilizati ing. and – Disp chniques. mes: After con 1. 1 2. 1 3. 1 4. 1 5. 1 4. 1 5. 1 4. 1 5. 1 5. 1 5. 1 5. 1 4. 1 5. 1 6. 5. 1 5. 1 6. 5. 1 5. 1 6. 5. 1 7. 5. 1 7. 7. 1 7. 7. 1 7. 1 7. 1 7. 1 7. 1	tection, Meth AGE SYSTI Quantity of a sposal stand appurtenance E TREATM unit operation mary sedime ion ponds – 3 osal into w pletion of th Design the co Design the w Build a sewe Design the t quantity. Engineering and Jain.A., 1 Sewage Trea 2 Delhi, 1997 nual on Wat	rdy cross me nods. House s EM, COLLE sanitary sewa over – Desi es – Pump sel ENT AND I n and process entation tanks Septic tanks v ater bodies – e course, Stu- omponents of ater treatmen ater distributi rage system b reatment uni- g Vol. II, Kha Environmenta	thod – Equ ervice con CTION A ge – Storr gn of sew ection. DISPOSAI – Design , activated vith soak p – Oxygen dent will b the transm t units base on to the i y flow esti ts for the EO, Minis	ivalent pip nection - Sy ND TRAN n runoff es ers – Com principles of sludge pro- its – Sludge sag curve e able to ission main ad on its pri- ndividual b mation and treatment of ners, New I ing, Vol.II, ry of Urba	e method - /stems of pl SMISSION timation – puter appli of primary a cess – Aera e: treatment – Streeter for the wa nciples and aildings designing of waste w Delhi, 2003 Lakshmi P n Developm	Pipe App lumbing. Wastewat cations – and second ation tank t and dispo Phelp's Phelp's Tot functions suitable si vater base	and o cosal — mode al: <u>ze of</u>	ances aracte ng, jo reatmo xidati Bioga I – W	-opera 9 He ristics inting 9 He ent, sc on dit s reco Vastev 45 He s	ours ours and ours creeer tch - overy vates

1902CE552		ENVIRONMENTAL ENGINEERING LAB	L	Т	Р	С
			0	0	2	1
Course Object	tives:					
		ne basics, importance of water and wastewater treatment and me	ethods	s mea	suren	nent.
		ne various effects of water and waste water pollution.				
		BOD and COD				
		alcium, Potassium and Sodium				
		etal effects and finding methods				
List of experin						
	1	I, Electrical conductivity and turbidity				
2. Deterr	nination of <mark>C</mark>	alcium, Potassium and Sodium				
3. Deterr	nination of Pl	nosphate and Sulphate				
4. Deterr	nination of O	ptimum Coagulant Dosage by Jar test apparatus				
5. Deterr	nination of av	vailable Chlorine in Bleaching powder and residual chlorine in v	water			
6. Deterr	nination of A	mmonia Nitrogen				
7. Estima	ation of suspe	nded, volatile and fixed solids				
8. Deterr	nination of D	issolved Oxygen				
9. Estima	ation of B.O.I	<mark>)</mark>				
10. Estima	ation of C.O.	D				
			Tota	al:	45 H	ours
Course Outco						
		letion of the course, Student will be able to				
	1.characteri	ze given water and waste water sample				
References:						
		examination of water and wastewater, APHA, 20th Edition, Wa	shing	ton, 1	1998	
		tal Engineering Vol. I & II", Khanna Publishers, New Delhi				
3. Modi, P.N.,	"Environmer	tal Engineering Vol. I & II", Standard Book House, Delhi-6				

1902CE603		HYDROLOGY AND WATER RESOURCES ENGINEERING	L	Т	Р	C
			3	0	0	3
Course Object	ctives:				•	
		ce the student to the concept of hydrological aspects of ements and should be able to quantify, control and regulate t				•
Unit I	PRECIPI	TATION AND ABSTRACTIONS			9 Ho	ours
Hydrologica	l cycle-M	leteorological measurements-Requirements, types a	nd	forr	ns	of
precipitation Interception-		ges-Spatial analysis of rainfall data using Thiessen and I. . Horton's equation, pan evaporation measurements				
1	1	Horton's equation-double ring infiltrometer, infiltration indic		e i u	Porue	1011
Unit II	RUNOFF	Torion e equation double ring minimeneer, minimus mai			9 Ho	ours
		d basin-Catchment characteristics-factors affecting runoff-	Run d	off es		
		s table and SCS methods–Stage discharge relationships flo				
Hydrograph-	•	e e i				
Unit III		ND DROUGHT			9 Ho	ours
Natural Dis	asters-Flood	Estimation-Frequency Analysis-Flood Control-Definition	ions	of		
		gical and agricultural droughts-IMD method-NDVI analy			•	
Area Program	• •			U		
Unit IV	RESERVO				9 Ho	ours
Classification	n of reserve	birs, General principles of design, site selection, spillway	vs, el	evati	on–ar	ea-
capacity-stor	age estimati	on, sedimentation-life of reservoirs-rule curve				
Unit V	GROUND	WATER AND MANAGEMENT			9Ho	ours
Origin-Class	ification and	l types-properties of aquifers-governing equations-steady a	ind u	nstea	dy flo	<mark>w-</mark>
artificial recl	narge-RWH	in rural and urban areas				
		Tota	al:		45 Ho	ours
Further Read	ling:					
		prepare data for GIS and RS				
	2. Civil e	ngineering application for various fields				
Course Outco	omes:					
	After comp	letion of the course, Student will be able to				
	1. Explair	the key drivers on water resources, hydrological proces	sses a	and th	neir	
	integra	ted behavior in catchments				
		se of hydrological models to surface water problems includ	ing b	asin		
		eristics, runoff and Hydrograph				
		the concept of hydrological extremes such as Flood an	nd Di	rough	it and	
		ement strategies				
		be the importance of spatial analysis of rainfall and desig	n wa	ter st	orage	
	reservo					
	5. Illustra	te the concepts of groundwater for water resources manager	nent			
References:						
	-	ing Hydrology"-Tata McGraw Hill, 2010				
David Keith I	odd. "Groun	dwater Hydrology", John Wiley & Sons, Inc. 2007				

1901MGX01		TOTAL QUALITY MANAGEMENT	L	Т	P	C
			3	0	0	3
Course Objec	tives:	To facilitate the understanding of Quality Managem	ent p	orinci	ples	and
		process.				
Unit I	INTRODU	UCTION			9 Ho	ours
Introduction –	Need for a	quality – Evolution of quality – Definitions of quality	/ – D	imer	nsion	<mark>s of</mark>
		ity – Basic concepts of TQM – TQM Framework -				
U .		sby – Barriers to TQM – Quality statements – C				
	ntation, Cu	stomer satisfaction, Customer complaints, Customer	reter	ntion	<u>– C</u>	<mark>osts</mark>
of quality. Unit II	TOM DDI	NCIPLES			9 Ho	
		c quality planning, Quality Councils – Employee	inv			
-		ent, Team and Teamwork, Quality circles Recognit				
		– Continuous process improvement – PDCA cycl				
		arthering, Supplier selection, Supplier Rating	_, _ ~	,		
Unit III	-	OLS AND TECHNIQUES I			9 Ho	ours
The seven tra	aditional to	ools of quality - New management tools - Six	sigm	a: C	Conce	pts,
		ns to manufacturing, service sector including IT -	Benc	h m	arkin	ig –
		ench marking process – FMEA – Stages, Types.				
Unit IV		OLS AND TECHNIQUES II			9 Ho	
		Capability – Concepts of Six Sigma – Quality Func			-	
(QFD) – Tagu measures.	icni quality	r loss function – TPM – Concepts, improvement nee	as –	Peri	orma	ince
Unit V		Y SYSTEMS			9Hc	ours
	<u> </u>	SO 9001-2008 Quality System – Elements, Docun	nenta	tion		
		– ISO 14000 – Concepts, Requirements and I				
		acturing and service sectors.				
		Tota	al:	4	5 Ho	ours
Further Read	ing:					
	0	eering economics and cost analysis				
		ruction and planning management				
Course Outco						
		pletion of the course, Student will be able to	<u> </u>	0.5	1015	
		nderstand the concepts, dimension quality and philoso	phies	ot	QM.	
		nderstand the principles of TQM and its strategies.				
		oply seven statistical quality and management tools.				
		nderstand TQM tools for continuous improvement. Inderstand the QMS and EMS.				
	J. UI					

1902CE604		GLOBAL WAR CHANGE	MING AND CLIN	IATE	L	T	Р	C
					3	0	0	3
Course Obje	ectives:							
	W 2. To 3. To	rming. analyze the globa	arth's Climate Systen l warming and their mpact of climate ch	effects due to cl	imate	e cha	inge.	ion
Unit I		NTRODUCTION OF GLOBAL WARMING					9 Ho	ours
	tants-oxides	of nitrogen - parti	ation- the mole co iculate - Green Hou RE, EMISSION	se Gases.	alcula AN		s- pp 9 Ho	
		TREADING	,					
	le from veh	cle - miscellaneou	emissions from p is source of carbon	dioxide- uptake	of ca	arbor		
Unit III	<mark>OVERVI</mark> SCIENCH		TE VARIABILI	FY AND CLI	MAT	Έ <mark>Ε</mark>	9 Ho	ours
			mate prediction - the p			vsica	l clin	nate
Unit IV		F GLOBAL CL		0	2		9 Ho	urs
			e system - basics of processes - the carbo		cing -	atm	iosph	eric
Unit V		*	IN THE CLIMAT					9
								ours
			state- temperature – saturation - wave	e processes in th	e atr	nosp	here	and
Course Outo	omes.			Tota	al:	4	5 Ho	urs
	After com 1.Outline 2. Explain 3. Illustrat 4. Describ	he principle invol the carbon emission about the climate the climate comp	se, Student will be a ved in the greenhou on and its mitigation e variability parame ponents and the circ	se gas emission. n methods. ters. ulation system.				
	5. Discuss	about the physical	l processes involved	l in the climate s	ysten	1.		

1903CE033	WATER POLLUTION AND MANAGEMENT	L	Т	Р	С
		3	0	0	3
Course Objec	tives:				
	1. To impart knowledge on the importance and necessity of water				
	2. To educate about the water pollution and its impact				
	3. To impart knowledge on water quality analyzing techniques				
	4. To make awareness in monitoring and management of water				
Unit I	WATER RESOURCES				ours
	roperties of water -Water resources of the world and India -National V	Nater	Polic	≿y− W	/ater
	& subsurface sources – Water Quality Parameters – Standards.				
Unit II	WATER POLLUTION				ours
	sification, nature and Toxicology of water pollutants -Ground water pollut	tion–C	Ocean	Pollu	ition
	- River pollution-A case study				
Unit III	EFFECTS OF WATER POLLUTION				ours
	er pollutants on Human health- Ecological and Economic impacts of water	pollut	tion-l	Marin	e oil
pollution and i					
Unit IV	ANALYSIS & INSTRUMENTATION				ours
	Pollutants: Titrimetry - Gravimetry - Spectrophotometry - Chromate				
	trumentation: Principles and Applications of UV-VIS Spectrophotometer	– Fla	me P	hoton	neter
	orption Spectrophotometer –Gas Chromatography – GLC – HPLC				
Unit V	MONITORING & MANAGEMENT			9 H	
	monitoring-Water (Prevention and Pollution Control) act 1974 - Pollution	on co	ntrol	devic	es –
Polluters pay p	1				
	Tot	al:	4	45 H	ours
Further Read					
	1. Water supply engineering				
	2. Waste water engineering				
Course Outco	mes:				
	After completion of the course, Student will be able to				
	1. Illustrate about the sources of water and the quality standards				
	2. Classify the nature of pollutants and its source				
	3. Outline the effects of water pollution on biodiversity				
	4. Select the suitable analysis technique for the water quality parameter of	estima	ntion		
	5. Select the accurate monitoring and management methods				
References:					
1. Laurent H	odges – Environmental Pollution				
2. Willard, N	ferritt and Dean – Instrumental Analysis				
	Analysis of Water and Waste Water				
5. AITIA-1	marysis of water and waste water				

1901HS002	INTELLECTUAL PROPERTY RIGHTS FOR ENGINEERS	L	T	Р	C
		3	0	0	3
PREREQUISITE					
cover trader conte	ourse assumes no prior skill or background in design, art or en s the fundamental aspects of intellectual property (IP): copyrig narks, patents, geographical indications, and industrial designs nporary issues impacting the IP field such as: new plant varies cement of IP rights and emerging issues in IP.	ht and It als	related	l rights rs	,
COURSE OBJEC					
	1. A foundation in the basic concepts of IP				
	2. Better understanding of the relationship between IP and health, climate change, traditional knowledge and emer		· ·		such as
Module I In	troduction			9 H	ours
	Copyright, Trademarks, Geographical Indicators, Industria cement of IP Rights, Emerging Issues in IP & IP Managemen		gns, P	atents,	Unfair
	pyrights &Trademarks	L		6 H	ours
	e Study, Historical background, Principles, Notion of Wor	k, Rig	tts an		
0	ographical Indicators & Industrial Designs			6 H	ours
	e Study, Historical background, Principles, Notion of Wor	k, Rig	tts an		
Module IV Pate	ents			15 H	Iours
Property Protection	al Patent System and Regional Patent Protection Mechanic n Based on Types of Inventions, Legal Issues of the Paten tant Cases and Discussions, IP and Development - Flexibilitie urch	ting P	rocess,	Enfor	<mark>cement,</mark>
	ent Cooperation Treaty				ours
	se of PCT, Preparing a PCT Application, PCT Services, I	atent	Agent	and C	ommon
Representatives, In	nternational Search, International Examination		TOTA		TOTIDO
Course Outcomes			IUIA	L: 45 I	HOURS
 Explain va Explain co Explain ba Explain co 	nrious types of IPRs specific to Engineering oncepts such as Copyrights, Trademarks, GIs and Industrial de asic concepts of Engineering Patents oncept of Patent Search and various methods to do it sample PCT Application and explain examination procedures	-			
FURTHER REAL					
	Intellectual Property Rights by PandeyNeeraj&DharniKhus	-		akrishr	a B &
REFERENCES:					
· · ·	PR by Dr MK Bandarai, Central Law Publication, 2014				
	tellectual Property Rights, H.S. Chawla, Oxfors& IBH Publishin	g, 2020)		
	PR by JP Mishra, Central Law Publications				
4. https://patents.go	ogle.comIntroduction to IPR books				

1901HS00	6	DESIGN THINKING FOR INNOVATION	L	Т	Р	С
			3	0	0	3
PREREQU						
		rse assumes no prior skill or background in design, art, engine				
		all undergraduates and graduate students with an interest in lea				
	intervent	y recommended for those students planning social-venture and	a other	kinds o	r desig	n
COURSE						
COURSE		erstand how teaching and learning occurs in the design process	8			
		pgnize the ethical and social dilemmas and obligations of the p		of desig	on	
		gnose common adoption barriers in individuals, groups and org			5 ¹¹	
		elop a design theory from independent and qualitative research			0.00	
				servau	ons	
		cipate in and lead innovation in creative and collaborative sett	•			
	6. Und	ertake complex and unstructured problem-solving challenges i	n unfan	niliar de	omains	
Module I		luction to Design Thinking				ours
		sign, Why Design Thinking, 5-Step Design Thinking Pro	cess, A	pplicat	ions, (Creativ
		ture of Innovation			10.1	T
Module II		1 Thinking Approach		Ŧ		Iours
		Design Thinking, Divergent Thinking & Innovation Funnel,				Maps t
Module II		Opportunities, Case Study : Turing Creative Ideas into Viab	le Con	ipames	1	
		oring Design Thinking ToolKit ation, Ideation, Experimentation, Evolution			3 П	ours
		Challenge Project: Phase-1			5 H	ours
		Project Plan, How Might We statement, Project Timeline, F	Project	Check1		Juis
Module V		Challenge Project: Phase-2	10/000			Iours
		tand the Challenge, Prepare Research, Gather Inspiration, 1	nterpre	tation		
Search for	meaning	, Frame Opportunities, Ideation – Generate Ideas, Refin	e Ideas	Expe	erimen	tation
		t Feedback, Evolution – Track Learnings, Engage Others		, <u> </u>		
	<u>, , , , , , , , , , , , , , , , , , , </u>		r	ΓΟΤΑΙ	L: 45]	HOUR
Course Ou	itcomes:					
		cepts and basics of Design Thinking Principles				
		gn Thinking Approach through IDEO's method & Customer Jo				
		views and synthesize learnings to uncover insights and identify	opport	unities	for inn	ovatio
	•	iven Innovative Solutions to Real World Problems				
FURTHE						
		n for Social Impact: How to by IDEO.org				
	-	n Thinking Tool Kit by IDEO.org				
		eld guide to Human Centered Design by IDEO.org				
REFEREN	ICES:					
		e: Unleashing the Creative Potential Within Us All Book by D	avid M	. Kelley	and T	om
	Confidence	e: Unleashing the Creative Potential Within Us All Book by D	avid M	. Kelley	and T	om
1.Creative Kelley, 201	Confidence	e: Unleashing the Creative Potential Within Us All Book by D How Design Thinking Transforms Organizations and Inspires			and T	om

1901MGX07	UNIVERSAL HUMAN VALUES & ETHICS	L	Т	Р	С	
		3	0	0	3	
Course Object						
	1. To help students distinguish between values and skills, and un	derst	and	the n	eed,	
	basic guidelines, content and process of value education.					
	2. To help students initiate a process of dialog within themselves t	to kn	ow v	vhat t	hey	
	'really want to be' in their life and profession			. 1		
	3. To help students understand the meaning of happiness and prospective	penty	/ Ior	a nui	nan	
	being.4. To facilitate the students to understand harmony at all the level	e of	hum	n liv	ina	
	and live accordingly.	5 01	IIUIII	an nv	mg,	
	5. To facilitate the students in applying the understanding of harmony in existence in					
	their profession and lead an ethical life	ony i		stene	c m	
	then profession and lead an ethical me					
Unit I	Course Introduction - Need, Basic Guidelines, Content and	1		9 Ho	ours	
	Process for Value Education	•		/		
Understandin	g the need, basic guidelines, content and process for Valu	o Ec	luco	tion	Salf	
	what is it? - its content and process; 'Natural Acceptance'					
1	1 / 1		-			
	s the mechanism for self-exploration - Continuous Happiness a		-	•		
	Human Aspirations - Right understanding, Relationship and Pl					
-	uirements for fulfillment of aspirations of every human being					
	nderstanding Happiness and Prosperity correctly- A critical					
	rio - Method to fulfill the above human aspirations: understand	ding	and	livin	g in	
harmony at va						
Unit II	Understanding Harmony in the Human Being - Harmony i	in		9 Ho	ours	
<u> </u>	Myself		• 1	(D 1	<u> </u>	
	human being as a co-existence of the sentient 'I' and the					
•	the needs of Self ('I') and 'Body' - Sukh and Suvidha - Understand	•		•		
	I' (I being the doer, seer and enjoyer) - Understanding the character nony in 'I' - Understanding the harmony of I with the Body: Sany					
	al of Physical needs, meaning of Prosperity in detail - Programs to e				-	
Swasthya	ar of r hysical needs, meaning of r tosperity in detail - r tograms to t	IISUI		iyam	anu	
Unit III	Understanding Harmony in the Family and Society- Harm	onv		10 Ho	mrs	
		UIIY		10 110	Juis	
		v				
Understanding	in Human-Human Relationship	v	ling	value	e in	
•	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Unde	rstan	-			
human-human	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Unde relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ens	rstan sure l	Jbha	y-trip	ti;	
human-human Trust (Vishwas	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Unde relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ens s) and Respect (<i>Samman</i>) as the foundational values of relationship -	rstan sure <i>l</i> Und	<i>Jbha</i> ersta	y- <i>trip</i> nding	<i>ti</i> ; the	
human-human Trust (Vishwas meaning of Vi	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensist and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understar	rstan sure <i>l</i> Und	<i>Jbha</i> ersta the	y- <i>trip</i> nding meai	<i>ti</i> ; the	
human-human Trust (Vishwas meaning of Vi of Samman, Di	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensitive and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understar ifference between respect and differentiation; the other salient values	rstand sure <i>l</i> Und nding in rel	<i>Jbha</i> ersta the lation	y- <i>trip</i> nding meai nship	<i>ti</i> ; the	
human-human Trust (Vishwas meaning of Vi of Samman, Di Understanding	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensitive s) and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understant ifference between respect and differentiation; the other salient values the harmony in the society (society being an	rstand sure <i>l</i> Und nding in rel	<i>Jbha</i> ersta the lation	y- <i>trip</i> nding meau nship sion	<i>ti</i> ; the ning of	
human-human Trust (Vishwas meaning of Vi of Samman, Di Understanding family): Samad	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensist and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understant ifference between respect and differentiation; the other salient values the harmony in the society (society being an <i>dhan, Samridhi, Abhay, Sah-astitva</i> as comprehensive Human Goal	rstand sure <i>l</i> Und nding in rel in rel	<i>Jbha</i> ersta the lation xtens Visu	y- <i>trip</i> nding mean ship sion alizin	<i>ti</i> ; the ning of g a	
human-human Trust (Vishwas meaning of Vi of Samman, Di Understanding family): Samaa universal har	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensitive s) and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understant ifference between respect and differentiation; the other salient values the harmony in the society (society being an	rstand sure <i>l</i> Und nding in rel in rel	<i>Jbha</i> ersta the lation xtens Visu	y- <i>trip</i> nding mean ship sion alizin	<i>ti</i> ; the ning of g a	
human-human Trust (Vishwas meaning of Vi of Samman, Di Understanding family): Samaa universal har	in Human-Human Relationship harmony in the Family- the basic unit of human interaction - Under relationship; meaning of <i>Nyaya</i> and program for its fulfillment to ensist and Respect (<i>Samman</i>) as the foundational values of relationship - <i>shwas</i> ; Difference between intention and competence - Understar ifference between respect and differentiation; the other salient values the harmony in the society (society being an <i>dhan</i> , <i>Samridhi</i> , <i>Abhay</i> , <i>Sah-astitva</i> as comprehensive Human Goal monious order in society- Undivided Society (<i>AkhandSamaj</i>),	rstand sure <i>l</i> Und nding in rel in rel ls - Uni	<i>Jbha</i> ersta the lation xtens Visu	y- <i>trip</i> nding mean ship sion alizin	<i>ti</i> ; the ning of g a rder	

Understanding the harmony in the Nature - Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature - Understanding Existence as Co-existence (*Sah-astitva*) of mutually interacting units in all-pervasive space - Holistic perception of harmony at all levels of existence

Unit V	Implications of the above Holistic Understanding of Harmony	8 Hours
	on Professional Ethics	

Natural acceptance of human values - Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order - Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, - b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models - Case studies of typical holistic technologies, management models and production systems - Strategy for transition from the present state to Universal Human Order:a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers - b) At the level of society: as mutually enriching institutions and organizations

		Total:	45 Hours	
Further Proceeding:				
1.	Analysis about Code of Conduct for Ethical & Me	oral values		
Course Outcomes:				
After c	mpletion of the course, Student will be able to			
1. Understand the significance of value inputs in a classroom and start apply				
them i	their life and profession			
2. Dis	inguish between values and skills, happ	iness and acc	umulation of	
physic	I facilities, the Self and the Body, Intent	tion and Comp	etence of an	
individ	ual, etc.	-		
3. Un	erstand the value of harmonious relationship	p based on trust	and respect	
in thei	life and profession			
4. Un	erstand the role of a human being in ensur	ring harmony i	n society and	
nature				
5. Dis	inguish between ethical and unethical prac	ctices, and start	working out	
the stra	tegy to actualize a harmonious environment	wherever they	work.	
References:				
1. A Nagraj, 1998, Jeev	nVidyaEkParichay, Divya Path Sansthan, Amarka	intak.		
2. P L Dhar, RR Gaur, 1	990, Science and Humanism, Commonwealth Pub	lishers.		
3. A N Tripathy, 2003, 1	Iuman Values, New Age International Publishers.			
4. Ivan Illich, 1974, Ene	gy & Equity, The Trinity Press, Worcester, and H	arper Collins, US	A	

1902CE019		L	Т	Р	С
170202017	COASTAL ZONE MANAGEMENT	3	0	0	$\frac{c}{3}$
		3	U	U	3
	At the end of the semester,				
	1. The student shall be able to understand the coastal processes				
~	I I I I I I I I I I I I I I I I I I I				
Course Objectives:	2. The student shall be able to understand the coastal dynamics				
0	3. The student shall be able to understand impacts of structures like do	ocks, ha	arbors	and	
	quays leading to simple management perspectives along the coastal ze				
Unit I	COASTAL ZONE			9 H	ours
	Coastal zone regulations – Beach profile – Surf zone – Off shore – Coasta	l water	s - E		
	Lagoons – Living resources – Nonliving resources.				
	AVE DYNAMICS			9 He	ours
Wave classifica	tion - Airy's Linear Wave theory - Deep water waves - Shallow water w	aves –	Wave	e pres	sure
	- Wave Decay - Reflection, Refraction and Diffraction of waves - Break	ing of [,]	waves	s - W	ave
	res – Vertical – Sloping and stepped barriers – Force on piles.				
	AVE FORECASTING AND TIDES			9 H	ours
	sting - SMB and PNJ methods of wave forecasting - Classification of tide	es – Da	irwin	's	
	bry of tides – Effects on structures – seiches, Surges and Tsunamis.			_	
	OASTAL PROCESSES			9 He	_
	positional shore features – Methods of protection – Littoral currents – Coa	stal aq	uifers	– Sea	l
	– Impact of sewage disposal in seas.				
				0.11	
	ARBOURS	Imoda	ofdr	9 He	
Structures near	coast – Selection of site – Types and selection of break waters – Need and	<mark>l mode</mark>	of dr		
Structures near	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest.			edgin	g –
Structures near Selection of dre	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest.	l mode tal:			g –
Structures near Selection of dre Further Reading	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:		edgin 45 He	g – ours
Structures near Selection of dre Further Readin	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scien	tal:		edgin 45 He	g – ours
Structures near Selection of dre Further Readin	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 999	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng: Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scient 299 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999 nes:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. 8 Course Outcor At	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor Ai 1.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor An 1. 2. 3. 4.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor Ai 1. 2. 3. 4. 5.	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To ng:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor Ai 1. 2. 3. 4. 5. References:	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", M ook Co., 1999 mes:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. B Course Outcor An 1. 2. 3. 4. 5. References: 1.Ed. A.T. Ippe	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scier 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999 nes: Image: Ima	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 1. 2. B Course Outcor At 1. 2. 3. 4. 5. References: 1.Ed. A.T. Ippe 2.Dwivedi, S	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Sciet 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999 nes:	tal:	Publis	edgin 45 He	g – ours
Structures near Selection of dre Further Readin 1. 19 2. 8 Course Outcor Ai 1. 2. 3. 4. 5. References: 1.Ed. A.T. Ippe 2.Dwivedi, S Tamilnadu",	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Sciet 299 Quinn, A.D., "Design & Construction of Ports and Marine Structures", M ook Co., 1999 nes: fter completion of the course, Student will be able to Describe the Coastal zone regulations, Describe the coastal processes Explain the wave dynamics and forecast waves Understand the erosion and depositional shore protection Plan the coastal structures including harbours and tides n, "Coastline Hydrodynamics", McGraw-Hill Inc., New York, 1993 S.N., Natarajan, R and Ramachandran, S., "Coastal Zone Management in Madras, 199 Maras	tal:	Publis Hill	edgin 45 He hing (g – ours
Structures near Selection of dre Further Readin 1. 1. 2. B Course Outcor Ai 1. 2. 3. 4. 5. References: 1.Ed. A.T. Ippe 2.Dwivedi, S Tamilnadu", 3.Richard Sy	coast – Selection of site – Types and selection of break waters – Need and dgers – Effect of Mangalore Forest. To mg: To Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Sciet 2099 Quinn, A.D., "Design & Construction of Ports and Marine Structures", Mook Co., 1999 nes:	tal:	Publis Hill	edgin 45 He hing (g – ours

ME ENVIRONMENTAL ENGINEERING

Course Objectives: 3 0 0 3 Course Objectives: 1. To educate the students about water chemistry 2. To impart knowledge in the area of air and soil chemistry 3. To impart knowledge on the transformation of chemicals in the environment 9 Hours Stoichiometry and mass balance-Chemical equilibrium, acid base, solubility product (Ksp), heavy metal precipitation, amphoteric hydroxides, CO2 solubility in water and species distribution – Chemical kinetics, First order-12 Principles of green chemistry. 11 Hours Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. 7 Hours Unit II Atmospheric Chemistry 7 Hours Atmospheric structure —chemistry 9 Hours Nature and composition of soli-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil - Acid rain- origin and composition of soli-Clays- cation exchange capacity-acid base and ion-exchange reactions in soli - Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic in emediation. 9 Hours Unit V Environmental Chemicals 9 Hours Nature and composition of soil-Clays- cation exchange capacity	17EV102		ENVIRONMENTAL CHEMISTRY	L	Τ	Р	С
1. To educate the students about water chemistry 2. To impart knowledge in the area of air and soil chemistry 3. To impart knowledge on the transformation of chemicals in the environment Unit I Introduction 9 Hours Stoichiometry and mass balance-Chemical equilibrium, acid base, solubility product (Ksp), heavy metal precipitation, amphoteric hydroxides, CO2 solubility in water and species distribution – Chemical kinetics, First order- 12 Principles of green chemistry. 11 Hours Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. 7 Hours Atmospheric Chemistry 7 Hours Atmospheric Chemistry 9 Hours Nature and composition of particulates. Air quality parameters-effects and determination. 9 Hours Nature and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions is noil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. 9 Hours Nature and composition of soil-Clays- cation of Hg &As- Organic chemicals- Pesticides, Dioxins, environmental applications. 9 Hours Further Reading 10 analyze and create a solution for				3	0	0	3
2. To impart knowledge in the area of air and soil chemistry 3. To impart knowledge on the transformation of chemicals in the environment Unit I Introduction 9 Hours Stoichiometry and mass balance-Chemical equilibrium, acid base, solubility product (Ksp), heavy metal precipitation, amphoteric hydroxides, CO2 solubility in water and species distribution – Chemical kinetics, First order - 12 Principles of green chemistry. Unit II Aquatic Chemistry 11 Hours Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. 7 Hours Unit III Atmospheric Chemistry 7 Hours Atmospheric structure – chemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO ₂ capture and sequestration – Acid rain- origin and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. Unit IV Soil Chemistry 9 Hours Nature and composition of soil-Reclamation of Hg &As- Organic chemicals, CNT, titania, composites, environmental applications. 9 Hours PCBs, PA	Course Ob	jectives:					
3. To impart knowledge on the transformation of chemicals in the environment Unit I Introduction 9 Hours Stoichiometry and mass balance-Chemical equilibrium, acid base, solubility product (Ksp), heavy metal precipitation, amphoteric hydroxides, CO2 solubility in water and species distribution – Chemical kinetics, First order-12 Principles of green chemistry. 11 Hours Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. Unit II Atmospheric Chemistry 7 Hours Atmospheric structure –-chemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO ₂ capture and sequestration – Acid rain- origin and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. 9 Hours Valt V Environmental Chemicals 9 Hours Fuery metals by electrokinetic remediation – Speciation of Hg &As- Organic chemicals. Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. 9 Hours							
Unit I Introduction 9 Hours Stoichiometry and mass balance-Chemical equilibrium, acid base, solubility product (Ksp), heavy metal precipitation, amphoteric hydroxides, CO2 solubility in water and species distribution – Chemical kinetics, First order-12 Principles of green chemistry. 11 Hours Unit II Aquatic Chemistry 11 Hours Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, E – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. 7 Hours Unit II Atmospheric Chemistry 7 Hours Atmospheric structure - chemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO ₂ capture and sequestration – Acid rain- origin and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Acgricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. 9 Hours Unit V Evironmental Chemicals 9 Hours Further Reading 7 total: 45 Hours PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. 9 Houres Further Reading		2. To imp	art knowledge in the area of air and soil chemistry				
Stoichiometry and mass balance-Chemical equilibrium, acid base, solubility product (Ksp), heavy metal precipitation, amphoteric hydroxides, CO2 solubility in water and species distribution – Chemical kinetics, First order- 12 Principles of green chemistry. Unit II Aquatic Chemistry 11 Hours Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. Unit III Atmospheric Chemistry 7 Hours Atmospheric structure – chemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO ₂ capture and sequestration – Acid rain- origin and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. 9 Hours Heavy metals-Chemical speciation of Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. 9 Hours Further Reading To tall: 45 Hours Interviewer and create a solution for environmental issues. 1. Disti		3. To imp	art knowledge on the transformation of chemicals in the	environ	ment		
metal precipitation, amphoteric hydroxides, CO2 solubility in water and species distribution – Chemical kinetics, First order- 12 Principles of green chemistry. Unit II Aquatic Chemistry 11 Hours Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. Unit III Atmospheric Chemistry 7 Hours Atmospheric structure — chemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO ₂ capture and sequestration – Acid rain- origin and composition of particulates. Air quality parameters-effects and determination. Unit IV Soil Chemistry 9 9 Hours Nature and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. Unit V Environmental Chemicals 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Further Reading To analyze and create a solution for environmental issues. Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	Unit I	Introduction (1974)	<mark>n</mark>			9 Ho	ours
Chemical kinetics, First order-12 Principles of green chemistry. 11 Hours Unit II Aquatic Chemistry 11 Hours Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. 7 Hours Unit III Atmospheric Chemistry 7 Hours Atmospheric structurechemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO: capture and sequestration – Acid rain- origin and composition of particulates. Air quality parameters-effects and determination. 9 Hours Nature and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. 9 Hours Unit V Environmental Chemicals 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Curse Outcomes: Total: 45 Hours 4fter completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. U	Stoichiome	try and mass	balance-Chemical equilibrium, acid base, solubility prod	uct (Ks	p), he	avy	
Unit II Aquatic Chemistry 11 Hours Water quality parameters - environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation - Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE - pH diagrams, redox zones - sorption- Colloids, electrical properties, double layer theory, environmental significance and generation, oxidation and reduction, pE - pH diagrams, redox zones - sorption- Colloids, electrical properties, double layer theory, environmental significance and generation and reduction, pE - pH diagrams, redox zones - sorption- Colloids, electrical properties, double layer theory, environmental significance and generation, oxidation and reduction, pE - pH diagrams, redox zones - sorption- Colloids, electrical properties, double layer theory, environmental significance and generation, and reduction, pE - pH diagrams, redox zones - sorption- Colloids, electrical properties, double layer theory, environmental significance and generation, oxidation and reduction, pE - pH diagrams, redox zones - sorption- Colloids, electrical properties, double layer theory, environmental significance and generation - Acta and photochemical reactions - photochemical smog. Ozo- layer depletion - greenhouse gases and global warming, CO 2 capture and sequestration - Acta and rotical sing of particulates. Air quality parameters-effects and determination. Image: PH diagrams,				listribut	ion –		
Water quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption-Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. Unit III Atmospheric Chemistry 7 Hours Atmospheric structure — chemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO ₂ capture and sequestration – Acid rain- origin and composition of particulates. Air quality parameters-effects and determination. 9 Hours Nature and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. 9 Hours Further Reading To analyze and create a solution for environmental issues. 45 Hours After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved 2. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for </td <td>Chemical k</td> <td>inetics, First</td> <td>order- 12 Principles of green chemistry.</td> <td></td> <td></td> <td></td> <td></td>	Chemical k	inetics, First	order- 12 Principles of green chemistry.				
environment, volatilization, partitioning, hydrolysis, photochemical transformation – Degradation of synthetic chemicals-Metals, complex formation, oxidation and reduction, pE – pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation. Unit III Atmospheric Chemistry 7 Hours Atmospheric structure — chemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO ₂ capture and sequestration – Acid rain- origin and composition of particulates. Air quality parameters-effects and determination. Unit IV Soil Chemistry 9 Hours Nature and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. Unit V Environmental Chemicals 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Further Reading 7 to analyze and create a solution for environmental issues. Course Outcomes: 4 After completion of the course, Student will be able to 1. Distinguish the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	Unit II	Aquatic Cl	<mark>iemistry</mark>			11 Ho	ours
Unit III Atmospheric Chemistry 7 Hours Atmospheric structurechemical and photochemical reactions - photochemical smog. Ozone layer depletion - greenhouse gases and global warming, CO2 capture and sequestration - Acid rain- origin and composition of particulates. Air quality parameters-effects and determination. Dait IV Soil Chemistry 9 Hours Nature and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil - Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. 9 Hours Unit V Environmental Chemicals 9 Hours Heavy metals-Chemical speciation -Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. 9 Hours Further Reading To analyze and create a solution for environmental issues. 45 Hours Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues	environmen Degradation diagrams, r	nt, volatiliz n of synthetic edox zones –	ation, partitioning, hydrolysis, photochemical c chemicals-Metals, complex formation, oxidation and rec sorption- Colloids, electrical properties, double layer the	transfo duction,	rmati pE –	on – pH	
Atmospheric structurechemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO ₂ capture and sequestration – Acid rain- origin and composition of particulates. Air quality parameters-effects and determination. Unit IV Soil Chemistry 9 Hours Nature and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. Unit V Environmental Chemicals 9 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Total: 45 Hours Further Reading To analyze and create a solution for environmental issues. Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	U U					7 Ho	ours
Nature and composition of soil-Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. Unit V Environmental Chemicals 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. 9 Hours Further Reading Total: 45 Hours Further Reading After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	depletion -	greenhouse g	gases and global warming, CO2 capture and sequestration	– Acid			
in soil – Agricultural chemicals in soil-Reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation. Unit V Environmental Chemicals 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Total: 45 Hours Further Reading To analyze and create a solution for environmental issues. Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	Unit IV	Soil Chemi	stry			9 Ho	ours
metals by electrokinetic remediation. Unit V Environmental Chemicals 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Total: 45 Hours Further Reading To analyze and create a solution for environmental issues. Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	Nature and	composition	of soil-Clays- cation exchange capacity-acid base and ion	n-excha	nge r	eactio	ns
Unit V Environmental Chemicals 9 Hours Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Further Reading Total: 45 Hours Further Reading Image: Course Outcomes: Image: Course Outcomes: Image: Course, Student will be able to Image: Course Outcomes: Image: Course Outcomes: <td< td=""><td>in soil – Ag</td><td>ricultural che</td><td>emicals in soil-Reclamation of contaminated land; salt by</td><td>leachin</td><td>ig-He</td><td>avy</td><td></td></td<>	in soil – Ag	ricultural che	emicals in soil-Reclamation of contaminated land; salt by	leachin	ig-He	avy	
Heavy metals-Chemical speciation –Speciation of Hg &As- Organic chemicals- Pesticides, Dioxins, PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Total: 45 Hours Further Reading To analyze and create a solution for environmental issues. Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	metals by e	lectrokinetic	remediation.				
PCBs, PAHs and endocrine disruptors and their Toxicity- Nano materials, CNT, titania, composites, environmental applications. Total: 45 Hours Further Reading To analyze and create a solution for environmental issues. Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for							
Further Reading To analyze and create a solution for environmental issues. Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	PCBs, PAF	Is and endoci	rine disruptors and their Toxicity- Nano materials, CNT, t	Pesticido titania, o	es, Di comp	oxins osites	, ,
To analyze and create a solution for environmental issues. Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for			Т	'otal:		45 Ha	ours
Course Outcomes: After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for	Further R	eading					
After completion of the course, Student will be able to 1. Distinguish the chemistry involved 2. Understand the chemistry involved in water 3. Identify and solve the air pollution related issues 4. Understand the soil related chemistry and issues 5. Identify contaminating chemicals and can work out chemicals need calculations for		To analyze	and create a solution for environmental issues.				
 Distinguish the chemistry involved Understand the chemistry involved in water Identify and solve the air pollution related issues Understand the soil related chemistry and issues Identify contaminating chemicals and can work out chemicals need calculations for 	Course Ou	tcomes:					
 Distinguish the chemistry involved Understand the chemistry involved in water Identify and solve the air pollution related issues Understand the soil related chemistry and issues Identify contaminating chemicals and can work out chemicals need calculations for 		After comp	letion of the course, Student will be able to				
 Understand the chemistry involved in water Identify and solve the air pollution related issues Understand the soil related chemistry and issues Identify contaminating chemicals and can work out chemicals need calculations for 							
 Identify and solve the air pollution related issues Understand the soil related chemistry and issues Identify contaminating chemicals and can work out chemicals need calculations for 							
 Understand the soil related chemistry and issues Identify contaminating chemicals and can work out chemicals need calculations for 							
5. Identify contaminating chemicals and can work out chemicals need calculations for							
			•	need c	alcul	ations	for
		•					

17EV103		ENVIRONMENTA	L MICROBIOLOGY		L	Т	Р	С
					3	0	0	3
Course Ob	jectives:							
		*	understanding on microb	. .	nt to	envir	onme	ental
			h little prior knowledge o					
			nd biochemistry of bacte	ria, fungi, pro	otozo	a, vir	uses,	and
		are outlined.						
			ter, sewage sludge and s			-		
			utrient removal and the	transmission	of c	iseas	e-cau	sing
		sms are also covered.				-		
			e to industrial products ar					
		A	understanding on microb	. .	nt to	envir	onme	ental
			h little prior knowledge o	of the subject.				
Unit I		<mark>ion And Characteristi</mark>					5 He	
			, eukaryotic, cell structure		ics, P	reserv	vation	n of
-			mbinant DNA technolog	у.			10.77	
Unit II		And Nutrient Cycles					10 He	ours
			diversity of Microorgani					
			oor and Indoor, aerosols,				_	
		e	icance in water supplies	1				
			Hydrological - Nitrog	gen, Carbon, F	'nosp	norus	,	
		f Micro Organism in nu	itrient cycle.				10.11	
Unit III		n of Microorganisms	norrith phases south shrider	to matrin li	aid m		10 Ho	
			rowth phases, carbohydra , glycolysis, Kreb"s cycle					_
			hosphorylation, environm		-	-	5	
Bioenergeti	-	on system, oxidative p	nosphorylation, environn	ientai factors,	enzy	mes,		
Unit IV		in Wastewater					10 He	ours
			asites and their effects on	Human Anir	nal a			Juis
		, <u> </u>	Viral, Protozoan, and Hel					of
water – Col			i, Streptococcus, Clostrid			•		
			ogy of biological treatme					
			on and de-nitrification, eu					val
		hate. Microbiology of		I				
Unit V	Toxicology		000				10 H	ours
Ecotoxicol	ogy – toxicar	its and toxicity, Factors	influencing toxicity. Effe	ects – acute, cl	hroni	c, Tes	t	
organisms -	- toxicity tes	ting, Bio concentration	– Bioaccumulation, bio n	nagnification,	bioas	say, l	oio	
monitoring	, bioleaching			-		-		
				Tota	al:	4	45 He	ours
Further R	eading							
	Idantificati							
	Identificati	on and culturing of mic	roorganisms from differe	nt sources				
Course Ou		on and culturing of mic	roorganisms from differe	nt sources				

		1. The candidate at the end of the course will have a basic understanding on the basics of microbiology and their diversity and on the genetic material in the living cell.
		2. The candidate would be able to understand and describe the type of microorganisms in
		the environment and the role of microorganisms in the cycling of nutrients in an
		ecosystem.
		3. The candidate would have understood the role microbial metabolism in a wastewater
		treatment plant.
		4. The candidate would know the role of microorganisms in contaminated water and the
		diseases caused.
		5. The candidate has the ability to conduct and test the toxicity due to various natural and
		synthetic products in the environment.
Re	eferences	:
1.	S.C.Bh	atia, Hand Book of Environmental Microbiology, Part 1 and 2, Atlantic Publisher
2.	Gabriel	Bitton, Wastewater Microbiology, 2nd Edition,
3.	Raina N	A. Maier, Ian L. Pepper, Charles P. Gerba, Environmental Microbiology, Academic Press.
4.	SVS. R	ana, Essentials of Ecology and Environmental Science, 3rd Edition, Prentice Hall of India
	Private	Limited
5.	Stanley	E. Manahan, Environmental Science and Technology, Lewis Publishers.
6.	Hurst, O	C.J. (2002) Manual of Environmental Microbiology. 2nd Ed. ASM PRESS, Washington, D.C.
	ISBN 1	-55581 - 199 - X.
7	Eronly (Ly and Som Kappy III's Pagia Tayioglagy Taylor & Francis London (4th Ed) 2002

7. Frank C. Lu and Sam Kacew, LU"s Basic Toxicology, Taylor & Francis, London (4th Ed), 2002

17EV104			RANSPORT OF WATER AND WASTEV	WATER	L	Т	Р	С
					3	0	0	3
Course Ob	ojectives	s:						
			e the students in detailed design concepts rel		trans	missi	on ma	ains,
	-		ibution system, sewer networks and storm w					
TT •4 T			e the students in computer application on des	ign.			0.11	
Unit I			aulics and Flow Measurement		• • •		8 He	
			 – continuity principle, energy principle and re flow, minor heads losses, Carrying Capac 				ctiona	u
Unit II	Water	r Trai	nission and Distribution				10 He	ours
networks D	Design, a	nalys	ng, laying and maintenance, water hammer a and optimization – appurtenances – corrosion n Storage reservoirs.					
Wastewate	actors – I r pumps ce of sew	Desig and p	Collection and Conveyance of sanitary sewer; partial flow in sewers, ecor nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con	l, construction	n, insp	ign; ectio	10 H n and	
Planning fa Wastewater maintenanc wastewater Unit IV Necessity-	actors – I r pumps ce of sew rs. Storm - combin	Desig and p vers; I Wat ned a	of sanitary sewer; partial flow in sewers, ecor nping stations- sewer appurtenances; materia	I, construction	n, insp orrosiv	ign; bectio 7e	n and 7 H e	
Planning fa Wastewater maintenanc wastewater Unit IV Necessity- intensity du	actors – I r pumps ce of sew rs. Storm - combin uration a	Desig and p vers; I Wat ned an nd fre	of sanitary sewer; partial flow in sewers, econ nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con Drainage separate system; Estimation of storm water r sency relationships- Rational methods.	I, construction	n, insp orrosiv	ign; bectio /e of rat	n and 7 He	ours
Planning fa Wastewater maintenanc wastewater Unit IV Necessity- intensity du Unit V Use of com	actors – I r pumps ce of sew s. Storm - combin uration a Case S nputer so	Desig and p vers; I Wat ned an ned an nd fre Studio	of sanitary sewer; partial flow in sewers, econ nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con Drainage separate system; Estimation of storm water r	ll, construction weyance of co un-off Formu sewer design	n, insportosiv	ign; pectio /e of rat	n and 7 He infall 10 He	ours
Planning fa Wastewater maintenanc wastewater Unit IV Necessity- intensity du Unit V Use of com	actors – I r pumps ce of sew s. Storm - combin uration a Case S nputer so	Desig and p vers; I Wat ned an ned an nd fre Studio	of sanitary sewer; partial flow in sewers, econ nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con Drainage separate system; Estimation of storm water r sency relationships- Rational methods. and Software Applications n water transmission, water distribution and s	ll, construction weyance of co un-off Formu sewer design	n, insportosiv lation – EPA	ign; bectio /e of rai	n and 7 He infall 10 He	ours
Planning fa Wastewater maintenanc wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers	actors – I r pumps ce of sew rs. Storm - combin aration a Case S puter so sion 4.0,	Desig and p vers; I Wat ned an ned an nd fre Studio	of sanitary sewer; partial flow in sewers, econ nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con Drainage separate system; Estimation of storm water r sency relationships- Rational methods. and Software Applications n water transmission, water distribution and s	I, construction weyance of co un-off Formu sewer design ares.	n, insportosiv lation – EPA	ign; bectio /e of rai	n and 7 H infall 10 H 2.0,	ours
Planning fa Wastewater maintenanc wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers	actors – I r pumps ce of sew rs. Storm - combin uration a Case S nputer so sion 4.0, eading	Desig and p vers; I Wat ned an nd fre Studio oftwar SEW	of sanitary sewer; partial flow in sewers, econ nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con Drainage separate system; Estimation of storm water r sency relationships- Rational methods. and Software Applications n water transmission, water distribution and s	II, construction aveyance of construction un-off Formu sewer design ares.	n, insportosiv lation – EPA	ign; bectio /e of rai	n and 7 H infall 10 H 2.0,	ours
Planning fa Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers	actors – I r pumps c of sew ss. Storm - combination a actors – I Case S oputer so sion 4.0, eading Design atcomests	Desig and p vers; I wers; I wers; I ned an nd free Studie oftwar SEW	of sanitary sewer; partial flow in sewers, economic stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; comorganity of sever outfalls-mixing conditions; comorganity of sever separate system; Estimation of storm water relency relationships- Rational methods. and Software Applications n water transmission, water distribution and sever state set software set software set of the	II, construction aveyance of construction un-off Formu sewer design ares.	n, insportosiv lation – EPA	ign; bectio /e of rai	n and 7 H infall 10 H 2.0,	ours
Planning fa Wastewater maintenanc wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Ro	actors – I r pumps c of sew ss. Storm - combination a actors – I Case S oputer so sion 4.0, eading Design atcomests	Desig and p vers; I wers; I wers; I ned an nd free Studie oftwar SEW	of sanitary sewer; partial flow in sewers, ecor nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con Drainage separate system; Estimation of storm water r lency relationships- Rational methods. and Software Applications n water transmission, water distribution and s R, BRANCH, Canal ++ and GIS based software	II, construction aveyance of construction un-off Formu sewer design ares.	n, insportosiv lation – EPA	ign; bectio /e of rai	n and 7 H infall 10 H 2.0,	ours
Planning fa Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	actors – I r pumps c of sew ss. Storm - combination a Case S nputer so sion 4.0, eading Design atcomess After c 1. Ur	Desig and p vers; I Wat ned an nd fre Studio oftwar SEW	of sanitary sewer; partial flow in sewers, ecor nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con Drainage separate system; Estimation of storm water r lency relationships- Rational methods. and Software Applications n water transmission, water distribution and s R, BRANCH, Canal ++ and GIS based software pipelines and sewers for various project areas on of the course, Student will be able to d the fluid flow properties	II, construction aveyance of construction un-off Formu sewer design ares.	n, insportosiv lation – EPA	ign; pectio /e of rai	n and 7 He infall 10 He 2.0, 45 He	ours
Planning fa Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	actors – I r pumps c of sew s. Storm - combination a actors – I r pumps c of sew s. Storm - combination a actors – I actors – I	Desig and p vers; I wers; I wers; I wers; I ned an of free SEW	of sanitary sewer; partial flow in sewers, economic stations - sewer appurtenances; materia sign of sewer outfalls-mixing conditions; comorganing stations - sewer appurtenances; materia sign of sewer outfalls-mixing conditions; comorganing end separate system; Estimation of storm water reserve relationships - Rational methods. and Software Applications n water transmission, water distribution and severs for various project areas pipelines and sewers for various project areas on of the course, Student will be able to d the fluid flow properties ter supply main, distribution network and severes	II, construction aveyance of construction un-off Formu sewer design ares.	n, insportosiv lation – EPA	ign; pectio /e of rai	n and 7 He infall 10 He 2.0, 45 He	ours
Planning fa Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	actors – I r pumps c of sew ss. Storm - combination a Case S puter so sion 4.0, eading Design Itcomes: After c 1. Ur 2. Deg 3. Deg	Desig and p vers; I Wat ned an and fre Studie oftwar SEW	of sanitary sewer; partial flow in sewers, ecor nping stations- sewer appurtenances; materia sign of sewer outfalls-mixing conditions; con Drainage separate system; Estimation of storm water r tency relationships- Rational methods. and Software Applications n water transmission, water distribution and s R, BRANCH, Canal ++ and GIS based softwa software for various project areas on of the course, Student will be able to d the fluid flow properties ter supply main, distribution network and sever e drainage network for wastewater	II, construction aveyance of construction un-off Formu sewer design ares.	n, insportosiv lation – EPA	ign; pectio /e of rai	n and 7 He infall 10 He 2.0, 45 He	ours
Planning fa Wastewater maintenance wastewater Unit IV Necessity- intensity du Unit V Use of com LOOP vers Further Re	actors – I r pumps c of sew ss. Storm - combination a Case S nputer so sion 4.0, eading Design itcomess After c 1. Ur 2. De 3. De 4. De	Desig and p vers; I wers; I wers; I ned an and free Studie oftwar SEW	of sanitary sewer; partial flow in sewers, economic stations - sewer appurtenances; materia sign of sewer outfalls-mixing conditions; comorganing stations - sewer appurtenances; materia sign of sewer outfalls-mixing conditions; comorganing end separate system; Estimation of storm water reserve relationships - Rational methods. and Software Applications n water transmission, water distribution and severs for various project areas pipelines and sewers for various project areas on of the course, Student will be able to d the fluid flow properties ter supply main, distribution network and severes	II, construction aveyance of construction un-off Formu sewer design ares. Tot wer for variou	n, insporrosiv lation – EPA tal:	ign; pectio /e of rat	n and 7 He infall 10 He 2.0, 45 He dition	ours ours

17EV105	PRINCIPLES AND DESIGN OF PHYSICO- CHEMICAL TREATMENT SYSTEMS	L	Т	Р	С
		3	0	0	3

Unit I I Pollutants in version of the second sec	 To edu systems To edu such sy To edu such sy futroduction water and statement – state	wastewater – characteristics, Standards for performance - Significance Selection criteria-types of reactors- reactor selection-batch- contine Principles reening – Mixing, Equalization – Sedimentation – Filtration – Ev fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, de cation – Recent Advances. Principles of Chemical treatment – of tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	comprising 5 Hours e of physio- nuous type- 10 Hours vaporation – e separation, istillation – Coagulation
Unit IIPollutants inIchemical trackIchemical trackIkinetics.IUnit IIIPhysical trackIIncinerationIReverse OsmIstrippingIflocculationIElectrolyticISelection of TFFlocculationI	 To edu such sy Such sy Introduction water and set atment – set gas trans pass trans posis, nand crystalliz Precipita pethods, Set Design of P Greatment – set 	cate the students on design of treatment systems and the components stems, leading to the selection of specific process. Dn wastewater – characteristics, Standards for performance - Significance Selection criteria-types of reactors- reactor selection-batch- contin Principles reening – Mixing, Equalization – Sedimentation – Filtration – Ev fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, di- ation – Recent Advances. Principles of Chemical treatment – O tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	5 Hours e of physio- nuous type- 10 Hours vaporation – e separation, istillation – Coagulation n exchange,
Unit IIPollutants inIchemical treatIchemical treatIkinetics.IUnit IIIPhysical treatIIncinerationIReverse OsmIstrippingIflocculationIElectrolyticISelection of TFlocculationFlocculationI	such sy introduction water and mathematic atment – a mathematic freatment - So osis, nano l crystalliz osis, nano l crystalliz - Precipita nethods, So Design of M Freatment -	stems, leading to the selection of specific process. Mastewater – characteristics, Standards for performance - Significance Selection criteria-types of reactors- reactor selection-batch- contin Principles recening – Mixing, Equalization – Sedimentation – Filtration – Ev fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, di- ation – Recent Advances. Principles of Chemical treatment – O tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	5 Hours e of physio- nuous type- 10 Hours vaporation – e separation, istillation – Coagulation n exchange,
Pollutants in v chemical treat kinetics.Unit IIPhysical treat Incineration - Reverse Osm stripping and flocculation - Electrolytic mUnit IIIISelection of T Flocculation -	Introduction water and the second statement - Precipitate thods, Second statement - Secon	wastewater – characteristics, Standards for performance - Significance Selection criteria-types of reactors- reactor selection-batch- contine Principles recening – Mixing, Equalization – Sedimentation – Filtration – Ev fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, di- cation – Recent Advances. Principles of Chemical treatment – of tion – flotation solidification and stabilization – Disinfection, Ior dvent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	e of physio- nuous type- aporation – e separation, istillation – Coagulation n exchange,
Pollutants in v chemical treat kinetics.Unit IIPhysical treat Incineration - Reverse Osm stripping and flocculation - Electrolytic mUnit IIIISelection of T Flocculation -	water and atment – a Freatment tment - So ogas trans tosis, nand crystalliz rosis, nand crystalliz Precipita tothods, So Design of M Freatment -	wastewater – characteristics, Standards for performance - Significance Selection criteria-types of reactors- reactor selection-batch- contine Principles reening – Mixing, Equalization – Sedimentation – Filtration – Ev fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, de cation – Recent Advances. Principles of Chemical treatment – of tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	e of physio- nuous type- aporation – e separation, istillation – Coagulation n exchange,
chemicaltreatkinetics.1Unit II1Physical treatIncinerationReverse0strippingandflocculationElectrolyticUnit III1Selection ofFlocculation	atment – A Freatment tment - So - gas trans nosis, nano 1 crystalliz - Precipita nethods, So Design of I Freatment -	Selection criteria-types of reactors- reactor selection-batch- contine Principles reeening – Mixing, Equalization – Sedimentation – Filtration – Evening – Mixing, Equalization – Sedimentation – Filtration – Evening – mass transfer coefficient Adsorption – Isotherms – Membrane of filtration, ultra-filtration and hyper filtration electro dialysis, distribution – Recent Advances. Principles of Chemical treatment – One for a flotation solidification and stabilization – Disinfection, Ior Ivent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	10 Hours vaporation – e separation, istillation – Coagulation n exchange,
kinetics.Unit II1Physical treatIncineration -Reverse Osmstripping andflocculation -Electrolytic mUnit III1Selection of TFlocculation -	Freatment tment - So - gas trans tosis, nano l crystalliz - Precipita tethods, So Design of M Freatment -	Principles reening – Mixing, Equalization – Sedimentation – Filtration – Ev fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, d ation – Recent Advances. Principles of Chemical treatment – o tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	10 Hours vaporation – e separation, istillation – Coagulation n exchange,
Unit II1Physical treatIncinerationReverse OsmstrippingflocculationElectrolyticUnit IIIISelection ofFlocculation	tment - Sc - gas trans nosis, nano l crystalliz - Precipita nethods, Sc Design of M Freatment -	reening – Mixing, Equalization – Sedimentation – Filtration – Ev fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, de ation – Recent Advances. Principles of Chemical treatment – o tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	vaporation – e separation, istillation – Coagulation n exchange,
Physical treatIncinerationReverse OsmstrippingandflocculationElectrolyticUnit IIIISelection of TFlocculation	tment - Sc - gas trans nosis, nano l crystalliz - Precipita nethods, Sc Design of M Freatment -	reening – Mixing, Equalization – Sedimentation – Filtration – Ev fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, de ation – Recent Advances. Principles of Chemical treatment – o tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Municipal Water Treatment Plants	vaporation – e separation, istillation – Coagulation n exchange,
Incineration – Reverse Osm stripping and flocculation – Electrolytic m Unit III I Selection of T Flocculation –	 gas trans nosis, nano crystalliz Precipita nethods, So Design of I Greatment - 	fer – mass transfer coefficient Adsorption – Isotherms – Membrane o filtration, ultra-filtration and hyper filtration electro dialysis, d ation – Recent Advances. Principles of Chemical treatment – o tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Junicipal Water Treatment Plants	e separation, istillation – Coagulation n exchange,
Reverse Osmstripping andflocculationElectrolyticUnit IIIISelection ofFlocculation	nosis, nano 1 crystalliz – Precipita nethods, Sc Design of P Freatment -	o filtration, ultra-filtration and hyper filtration electro dialysis, di ation – Recent Advances. Principles of Chemical treatment – o tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Aunicipal Water Treatment Plants	istillation – Coagulation n exchange,
strippingandflocculation-ElectrolyticmUnit IIIISelection ofTFlocculation-	 crystalliz Precipitanethods, Sc Design of March Freatment - 	ation – Recent Advances. Principles of Chemical treatment – of tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Junicipal Water Treatment Plants	Coagulation n exchange,
flocculation - Electrolytic m Unit III I Selection of T Flocculation -	 Precipitanethods, So Design of March Preatment 	tion – flotation solidification and stabilization – Disinfection, Ior lvent extraction – advanced oxidation /reduction – Recent Trends Aunicipal Water Treatment Plants	n exchange,
Electrolytic IIUnit IIIISelection of TFlocculation -	nethods, So Design of I Freatment -	lvent extraction – advanced oxidation /reduction – Recent Trends Aunicipal Water Treatment Plants	
Unit IIIISelection of TFlocculation	Design of I Freatment -	Aunicipal Water Treatment Plants	10 Hours
Selection of T Flocculation -	Freatment -		10 Hours
Flocculation -		$\mathbf{D}_{\mathbf{r}}$	
	 clarifier 	- Design of municipal water treatment plant units - Aerators - chemic	
media Disinfe		- tube settling - filters - Rapid sand filters, slow sand filter, pressure	
		splacement and gaseous type - Flow charts - Layouts - Hydraulic Pr	
		aspects - case studies, Residue management - Upgradation of exist	ing plants –
Recent Trend			1011
		ndustrial Water Treatment Plants	10Hours
U U		ter Treatment Units- Selection of process – Design of softeners – Desits – Flow charts – Layouts –Hydraulic Profile, PID - construction	
		esidue management – Upgradation of existing plants – Recent Trends	
~			
	<u> </u>	Vastewater Treatment Plants	10 Hours
U U	.	vastewater treatment units-screens-detritors-grit chamber-settling ta	•
		tering systems-sludge drying beds - Design of Industrial Wastewate tralization-Chemical Feeding Devices-mixers- floatation units-oil ski	
·		aulic Profile, PID, construction and O&M aspects – case studies, R	
		Upgradation of existing plants – Recent Trends.	euonning -
Residue mana	igement –		45 11
E4h D	J2	Total:	45 Hours
Further Read	<u> </u>	tion of advanced tweatment technologies for verieve westervator treatm	ant
Course Outc		tion of advanced treatment technologies for various wastewater treatment	lent
		letion of the course, Student will be able to	
1		the pollutants type in the wastewater	
2	2	tand the various treatment principles	
	U		
		p conceptual schematics required for the treatment of wastewater	
3	 Design Design 	the sewage treatment plants suitable treatment units for various industries	

17EV106 ENVIRONMENTAL CHEMISTRY LABORATORY	L	Т	Р	С	
--	---	---	---	---	--

											0	0	2	1
Cou	irse Ob	jectives:									U	U	-	1
		,	in in the analy	sis of ph	ysical	paramet	ers of v	vater a	nd w	aste wa	ater			
			in in the analy											
List	t of Exp	eriments:												
	Good	Laborate	ory Practi	ices,	Qual	ity c	ontrol,	С	alibra	ation	of	(Glassy	ware
	<mark>03</mark>													
	-	ng and Ana	lysis of wate	er (pH, a	alkalin	ity, hard	ness c	hloride	e, Su	lphate,	turbic	lity I		
	nitrate,												fluo	ride)
	12 Wester	1				TUNI	2:1 0	a	C	-C				-1-)
	wastew 12	ater analys	is (BOD, CO	D, Phos	spnate.	, IKN, (Jrease	, Sui	Tactan	and I	ieavy	/ met	ais).
		ng and ar	nalysis of ai	r pollu	tants	Ambien	t & (Stack	(R	SDM	<u>SO2</u>	and	NO	v)
	09	ig and an	arysis or a	i ponu	unto	7 molen		JULICIA		DI WI ,	502	and		<u>')</u>
	Samplir	ng and	characteriz	ation	of	soil	(CEC	&	S	SAR,	pН	aı	nd	K).
	<mark>09</mark>	C					,				•			,
											Tot	al	45 H	ours
			-									:		
Cou	irse Ou	tcomes:												
			pletion of the			t will be	able to							
			quality of env											
			ct analysis on	characte	eristic	s of wate	r and w	aste w	ater					
	erences			. .		C XX / /	1 33	τ.		21 . 5	1			
	,		lethods for the	e Examii	nation	of Water	and W	astew	ater,	21st Ec	1.			
		gton, 2005.	for the Errore	in ation .	f			a:1 D		III om	d Vaia	4 TT		
			for the Exam CH, Germany,		JI wate	er, waste	water s	on Ku	np, r	1.п. ап		ι, п.		
			sampling		veis	Iames	PLod	ne Ir	(Edit	(r) 3	rd Fo	litior	T	ewis
		ers,Inc,USA			y 515,	Junes	T.Lou	50 51	(Luit	01) 5		111101	і, L	C W15
17E	V107		ENVIRON	MENTA		CROBI	OLOG	Y			L	Т	Р	C
			LABORAT											
											0	0	2	1
Cou	ırse Ob	jectives:												
		1. To trai	in in the analy					vater a	nd w		ater			
				1	•	1								
			in in the analy	sis of ch	iemica	l parame	ters of	water	and v	vaste w				
		eriments:		sis of ch	iemica	l parame	ters of	water	and v	vaste w				
1.]	Prepara	eriments: tion of cultu	ure media			•		water	and v	vaste w				
1. 1 2. 1	Prepara Isolation	eriments: tion of cultu n, culturing	ure media and Identifica	ation of I	Microo	organism	<mark>s</mark>	water	and v	vaste w				
1. 1 2. 1 3. 1	Prepara Isolation Microon	eriments: tion of cultu n, culturing rganisms fro	and Identification and polluted has	ation of I abitats (s	Microo soil, w	organism ater and a	s air)				vater			
1. 1 2. 1 3. 1 4. 1	Prepara Isolation Microon Measure	eriments: tion of cultu n, culturing rganisms fro ement of gr	are media and Identifica om polluted ha	ation of I abitats (s organisr	Microo soil, w ns, As	organism ater and a say of er	s air) izymes	involv	v <mark>ed ir</mark>	<mark>ı biotra</mark>	vater nsforn	natio	1	
1. 1 2. 1 3. 1 4. 1 5. 1	Prepara Isolation Microon Measure Biodegn	eriments: tion of cultu n, culturing rganisms fro ement of gr radation of o	and Identifica and Identifica om polluted ha owth of micro organic matter	ation of I abitats (s organisr	Microo soil, w ns, As	organism ater and a say of er	s air) izymes	involv	v <mark>ed ir</mark>	<mark>ı biotra</mark>	vater nsforn	nation	1 1	
1. 1 2. 1 3. 1 4. 1 5. 1 6. 1	Prepara Isolation Microon Measure Biodegn Staining	eriments: tion of cultu n, culturing rganisms fro ement of gr radation of o g of bacteria	and Identifica and Identifica om polluted ha owth of micro organic matter	ation of 1 abitats (s organisr in wast	Microo soil, w ms, As e wate	organism ater and a say of er	s air) izymes	involv	v <mark>ed ir</mark>	<mark>ı biotra</mark>	vater nsforn	natio	1	
1. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1	Prepara Isolation Microon Measure Biodegn Staining Effect o	eriments: tion of cultu n, culturing rganisms fro ement of gr radation of o g of bacteria of pH, tempo	are media and Identifica om polluted ha owth of micro organic matter a erature on mic	ation of I abitats (s organism in waste robial gr	Microo soil, w ms, As e wate rowth	organism ater and a say of en r Analys	s air) zymes is of air	involv	v <mark>ed ir</mark>	<mark>ı biotra</mark>	vater nsforn	nation	1	
1. 2. 3. 4. 5. 6. 7. 8.	Prepara Isolation Microon Measure Biodegn Staining Effect o Pollutar	eriments: tion of cultu n, culturing rganisms fro ement of gr radation of o g of bacteria of pH, tempent removal u	and Identifica and Identifica om polluted ha owth of micro organic matter programic matter and programic matter and programic on microbe	ation of 1 abitats (s organisr in wast robial gr s from ir	Microo soil, w ns, As e wate rowth ndustri	organism ater and a say of en r Analys	s air) zymes is of air	involv	v <mark>ed ir</mark>	<mark>ı biotra</mark>	vater nsforn	natio	1	
1. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 8. 1 9. 1	Prepara Isolation Microon Measure Biodegn Staining Effect of Pollutar Effect of	eriments: tion of cultu n, culturing rganisms fro ement of gr radation of o g of bacteria of pH, tempo nt removal u of pesticides	are media and Identifica om polluted ha owth of micro organic matter a erature on mic	ation of I abitats (s organisr in waste robial gr s from ir organisr	Microo soil, w ns, As e wate rowth ndustri ns	organism ater and a say of er r Analys al effluer	s air) zymes is of ain nt.	involv r borne	ved in e mic	<mark>) biotra</mark> roorgar	nsform	natio	1	

12. Effect of Heavy metals on microbial growth		
13. Detection of Anaerobic bacteria (Clostridium sp.)		
14. Bioreactors		
	Total	45 Hours
	:	
Course Outcomes:		
After completion of the course, Student will be able to		
1. Field oriented testing of water, wastewater and solid waste for micro	obial conta	mination.
2. Perform toxicity test.		
References:		
1. Standard methods for the examination of water and wastewater, American Publi (21st edition) 2005.	ic Health A	Association
2. Charles Gerba, Environmental Microbiology: A laboratory may Publications, 2012.	nual, Else	vier
 Christon J. Hurst, Ronald L. Crawford, Jay L. Garland, David A. Lipson, Aaron D. Stetzenbach, Manual of Environmental Microbiology, 3rd Edition, ASM Press 		, and Linda

17EV201	PRINCIPLES AND DESIGN OF BIOLOGICAL	L	Т	Р	С
	TREATMENT SYSTEMS				

			3	0	0	3
Course Ob	jectives:		5	v	J	
	To educate for water a design of t	the students on the principles and process designs of various to nd wastewater and students should gain competency in the pro- reatment systems and the components comprising such systems of specific process.	cess e	mplo	yed i	
Unit I	Introducti			1	l0 He	ours
		treatment – significance – Principles of aerobic and anaerobic	treatr			
of biologica	l growth – I fficients for	Factors affecting growth – attached and suspended growth - De organics removal – Biodegradability assessment -selection of p	termir	natior	<mark>ı of</mark>	
Unit II	<mark>Aerobic T</mark>	reatment of Wastewater		1	lo He	ours
reactors, Me fluidized be treatment sy	embrane Bio d reactors, a stems, cons	nent plant units –Activated Sludge process and variations, Sequence of State S	ed Rea /stems	actors 5 – na	8- .tural	ow
Unit III		Treatment of Wastewater		1	l0 Ho	mrs
Attached an	d suspended	l growth, Design of units – UASB, up flow filters, Fluidized be rient removal systems – Flow chart, Layout and Hydraulic prot		BR, s	eptic	
Unit IV	<u> </u>	eatment and Disposal			5 Ho	
dewatering	(mechanical	gement facilities, sludge thickening, sludge digestion, biogas ge and gravity) Layout, PID, hydraulics profile – upgrading exist al – recent advances.			•	;
Unit V	Construct	ion Operations and Maintenance Aspects		1	lO Ho	ours
	of plant ope agement fac tcomes: After com	tional Maintenance problems – Trouble shooting – Planning, C rations – capacity building - Retrofitting Case studies – sewage ilities. Tot pletion of the course, Student will be able to p conceptual schematics required for biological treatment of w	al:	ment		
		ate pertinent criteria into system requirements.				
References	•	· · · ·				
1. Arceiva 2000.	lla, S.J., W	astewater Treatment for Pollution Control, TMH, New Dell	hi, Se	cond	Edit	ion,
Govern	ment of Indi	erage and Sewage Treatment" CPHEEO, Ministry of Un a, New Delhi, 1999.			•	
Graw-H	lill Publishi	NC, "Wastewater Engineering – Treatment and Reuse, Fourt ng Company Limited, New Delhi, 2003. nd Book of Water and Wastewater Treatment Plant operation				
4. 1.10. Sp York (2		a book of mater and matemater freatment fran operation	, CIX	U 11	, 1	

Course Objectives: 3 To impart knowledge on the principles and design of control of indoor/particula air pollutant and its emerging trends Unit I Introduction Structure and composition of Atmosphere – Sources and classification of air pollutants - Effort	0 ate/ga	0	3
To impart knowledge on the principles and design of control of indoor/particula air pollutant and its emerging trends Unit I Introduction	ate/ga		
To impart knowledge on the principles and design of control of indoor/particula air pollutant and its emerging trends Unit I Introduction	ate/ga		
air pollutant and its emerging trends Unit I Introduction	ale/ga		
Unit I Introduction		aseou	S
		7 He	nurs
Survey and composition of Atmosphere – Sources and classification of all pollutants - Em	ects (
pollutants on human health, vegetation & animals, Materials & Structures – Effects o			
Pollutants on the atmosphere, Soil & Water bodies – Long- term effects on the planet – Glob		limat	<mark>e</mark>
Change, Ozone Holes – Ambient Air Quality and Emission Standards – Air Pollution Indice	es – E	Emissi	ion
Inventories – Ambient and Stack Sampling and Analysis of Particulate and Gaseous Pollutar	nts.		
Unit II Air Pollution Modelling		5 Ho	nire
Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, W	Vind		
and stack plume patterns- Transport & Dispersion of Air Pollutants – Modeling Techniques			
Pollution Climatology.			
Unit III Control Of Particulate Contaminants		11 Ho	
Factors affecting Selection of Control Equipment - Gas Particle Interaction, - Working prince			ign
and performance equations of Gravity Separators (cyclone), Centrifugal separators Fabric fi			
Particulate Scrubbers, Electrostatic Precipitators – Operational Considerations - Process Con	ntrol	and	
Monitoring – Costing of APC equipment – Case studies for stationary and mobile sources.		11 11	
Unit IV Control of Gaseous Contaminants		11 Ho	
Factors affecting Selection of Control Equipment – Working principle, Design and performa of absorption, Adsorption, condensation, Incineration, Bio scrubbers, Bio filters – Process co			
Monitoring - Operational Considerations - Costing of APC Equipment – Case studies for sta			
mobile sources.	uioni	iry un	u
Unit V Indoor Air Quality Management		11 He	ours
Sources types and control of indoor air pollutants, sick building syndrome types – Radon Po	llutio	on and	d its
control - Membrane process - UV photolysis - Internal Combustion Engines - Sources and I			
Noise Pollution – Measurement – Standards –Control and Preventive measures.			
Total:	4	45 Ho	ours
Course Outcomes:			
After completion of the course, Student will be able to			
After completion of the course, Student will be able to			
After completion of the course, Student will be able to 1. Apply sampling techniques	ariou	s gase	ous

17EV203		IND	USTRIA	AL WA	STE	MANA	GEM	IENT			L	Т	Р	С
											3	0	0	3
Course Ob														
	To impart l		•		-					-	-		on,	
	cleaner tec		gies, ind	lustrial	wastev	water t	reatme	ent and	l residu	e mana	agement			
Unit I	Introducti					<u> </u>								ours
	cenario in In				-					-		-	ource	<mark>S</mark>
	f industrial v					<u> </u>								
	tal impacts -	-		-										
	y – Industria							-					i and	
	Foxicity of in	naustri	1al erriu	ents and	a Bioa	issay te	sts – P	viajor	issues (on wat	er quam	y		
managemer	lt.													
Unit II	Industrial	l Pollu	tion Pre	eventio	n & V	Vaste I	Minim	isatio	n				8 H	ours
Prevention	and Control	of Ind	lustrial F	Pollutio	n – Be	enefits	and Ba	arriers	– Was	te man	agemen	t Hier	archy	/ -
	ction techni	-												
	Options – Co			alysis –	Pay-b	ack pe	riod –	Imple	mentin	g & Pr	omoting	g Poll	ution	
	Programs in												10 11	
Unit III	Industrial						1 61		N'1 0 0		NT / 1		10 H	ours
	oad Equaliza			-										
	Inorganic C													
	n exchange, nstituents – 1													
-	rocesses – T	-	-		FIOCES	sses, C	nemica		uation	FIOCES	ses, Au	ance	u	
Unit IV	Wastewate		-		ol Mo	nogon	aont						9 H	01180
	and Commor							ment c	findus	trial a	nd dome	estic	911	Juis
	- Zero efflue												istrial	1
	ent status an		-	-		-	-							
	Quantificati													ering
	l of sludge –					-		0	,8	,				0
Unit V	Case Stud		0		j								10 H	ours
Industrial m	nanufacturing	ig proc	ess desc	ription.	, waste	ewater	charac	eteristi	cs, sou	rce red	luction of	option	s and	
	nent flow sh			-								-		
Pharmaceut	icals – Suga	ar and l	Distiller	ries							C		U	
	-													
<u><u> </u></u>	4	1									fotal:		45 H	ours
Course Ou		nlation	oftha	011400	Ctudor	at	ha ahl	a ta						
	After comp	•							ahaniar	n of or	idation			
			rinciples	-		-					luation	proce	sses.	
			suitable					ient of	waste	water.				
	3. Discus	ss abou	it the wa	astewate	er chai	racteris	stics							
	4. Design		eatment											

17EV204	SOLID AND HAZARDOUS WASTE MANAGEME		Т	Р	С
		3	0	0	3
Course Ob					
	To impart knowledge and skills in the collection, storage, transport,		-		nd
	recycling options for solid wastes including the related engineering p	principles,	desig	gn	
	criteria, methods and equipment.				
Unit I	Sources, Classification and Regulatory Framework			9 H	ours
Salient feat wastes, bio Elements of	Sources of solid and hazardous wastes - Need for solid and hazardo tures of Indian legislations on management and handling of municipa omedical wastes, nuclear wastes - lead acid batteries, electronic waste of integrated waste management and roles of stakeholders - Finan on for waste management.	l solid wa es , plastic	stes, l s and	nazaro fly a	lous sh –
Unit II	Waste Characterization and Source Reduction			8 Hoi	irs
	eration rates and variation - Composition, physical, chemical and biol	ogical pro			
wastes – H	Jazardous Characteristics – TCLP tests – waste sampling and characteristics – TCLP tests – waste sampling and characteristics – Waste exchange - Extended producer responsibility - Recyc	cterization	plan		
Unit III	Storage, Collection and Transport Of Wastes	and r		9 Hoi	irs
	and segregation of wastes at source – storage and collection of n	unicinal			
	f Collection systems - Need for transfer and transport – Transfer st				
	compatibility, storage, labeling and handling of hazardous wastes $-h$				
and transpo		uzuruous	uste	mann	0000
Unit IV	Waste Processing Technologies			10 Ho	ours
	of waste processing – material separation and processing technological	ologies –			
•	conversion technologies – methods and controls of Composting	-		-	
	es and energy recovery – incineration – solidification and stabilization	-			
-	of biomedical wastes - Health considerations in the context of operati				
	s and impact of outputs on the environment.		11000	mane	
Unit V	Waste Disposal			9 Hoi	irs
	osal options – Disposal in landfills - Landfill Classification, types and	1 methods			
	d operation of sanitary landfills, secure landfills and landfill bioreactor				
	gement – landfill closure and environmental monitoring – Rehabili				
		unon or	open	uum	
iandfill rem					
landfill rem		T-4-1		45 TT	
		Total:		45 H	ours
Course Ou	itcomes:	Total:		45 H	ours
	After completion of the course, Student will be able to	·			
	atcomes: After completion of the course, Student will be able to 1. Understand the characteristics of different types of solid and here	·			
	atcomes: After completion of the course, Student will be able to 1. Understand the characteristics of different types of solid and h factors affecting variation	azardous	waste	es and	the
	atcomes: After completion of the course, Student will be able to 1. Understand the characteristics of different types of solid and h factors affecting variation 2. Define and explain important concepts in the field of solid suggest suitable technical solutions for treatment of municipal at	azardous waste ma nd industr	waste anage ial wa	es and ment iste	the
	atcomes: After completion of the course, Student will be able to 1. Understand the characteristics of different types of solid and h factors affecting variation 2. Define and explain important concepts in the field of solid	azardous waste ma nd industr	waste anage ial wa	es and ment iste	the

17EV205	ENVIRONMENTAL IMPACT ASSESSMENT	L	Τ	Р	С
		3	0	0	3
Course Ob	jectives:				•
	1. To expose the students to the need, methodology, documentation	on and	usef	fulnes	s of
	environmental impact assessment and to develop the skill to p	repare	envi	ronme	ental
	management plan.				
	2. To provide knowledge related to the broad field of environme	ntal ri	sk as	sessn	ient,
	important processes that control contaminant transport and tools	that c	an b	e use	d in
	predicting and managing human health risks.				
Unit I	Introduction			8 H	ours
Historical of	levelopment of Environmental Impact Assessment (EIA). EIA in Project	Cycle.	Lega	<mark>l and</mark>	
Regulatory	aspects in India Types and limitations of EIA EIA process- screening	g – sco	ping	- setti	ng –
<mark>analysis – 1</mark>	nitigation. Cross sectoral issues and terms of reference in EIA – Public Pa	articipa	tion i	in EL/	<mark>۱.</mark>
Unit II	Impact Identification and Prediction			10 H	ours
Matrices -	Networks – Checklists –Cost benefit analysis – Analysis of alternatives –	Softw	are pa	ackag	es
	expert systems in EIA. Prediction tools for EIA – Mathematical modeling				tion
- Assessme	nt of impacts – air – water – soil – noise – biological – Cumulative Imp	act Ass	sessm		
Unit III	Social Impact Assessment and EIA Documentation			8 H	ours
	act assessment - Relationship between social impacts and change in comm				
	l arrangements. Individual and family level impacts. Communities in tran			menta	ition
preparation	ings – planning – organization of information and visual display material	s – Kej	jon		
Unit IV	Environmental Management Plan			7 H	ours
	ntal Management Plan - preparation, implementation and review – Mitiga	tion ar	nd		0420
	on Plans – Policy and guidelines for planning and monitoring programme			oject a	udit
- Ethical an	nd Quality aspects of Environmental Impact Assessment- Case Studies.		•	0	
Unit V	Environmental Risk Assessment and Management			12 H	ours
	ntal risk assessment framework-Hazard identification -Dose Response Ev			-	ıre
	t – Exposure Factors, Tools for Environmental Risk Assessment– HAZO				
	Event tree and fault tree analysis – Multimedia and multipathway exposu				
	t- Risk Characterization Risk communication - Emergency Preparedness	Plans -	-Desi	gn of	risk
managemen	nt programs.	otal:		45 H	oure
Course Ou		nai.		-5 11	Juis
	After completion of the course, Student will be able to				
	1. Understand the necessity to study the impacts and risks that will be	caused	l bv r	roiec	ts or
	industries and the methods to overcome these impacts.	Juabol	- ~ J F	10,00	
	 Know about the legal requirements of Environmental and Risk Asso 	ecemen	tfor	nroie	rte
	2. Know about the regar requirements of Environmental and KISK ASS	Josificii	101	projet	10.

17	EV206		UNIT OPERATIONS AND PROCESSES	L	Т	Р	C
			LABORATORY				
				0	0	2	1
Co	ourse Ob	jectives:					
		1. To de	evelop the skill for conducting Treatability studies of wa	ter an	nd w	vastew	ater
		treatm	ent by various Unit Operations and Processes using laboratory	scale	mod	els.	
		2. To de	evelop the skill for conducting Treatability studies of wa	ter ar	nd w	vastew	ater
		treatm	ent by various Unit Operations and Processes using laboratory	scale	mod	els.	
Li		eriments:					
1.	Coagul	ation and Fl	occulation				
2.		tudies on se					
<mark>3.</mark>	Studies	on Filtratio	n- Characteristics of Filter media				
<mark>4.</mark>	Water s	oftening					
<mark>5.</mark>	Adsorp	tion studies/	/Kinetics				
<mark>6.</mark>	Reverse	e Osmosis- S	Silt Density Index				
7.	Kinetic	s of suspend	led growth process (activated sludge process)- Sludge volume	Index			
<mark>8.</mark>			systems / kinetics (Demonstration)				
			on Processes – (Ozonation, Photocatalysis)				
<mark>10</mark>	. Disinfe	ction for Dr	inking water				
				Tot	al	45 H	ours
					:		
Co	ourse Ou						
			pletion of the course, Student will be able to				
			ict treatability studies for water and waste water treatment.				
		Ŭ	n laboratory models for various unit operations and processes.				
	eferences						
1.	Metcali	and Eddy.	. Inc. "Wastewater Engineering, Treatment, Disposal and R	euse,	Thire	d Edi	tion,
	Tata M	cGraw Hill	Publishing Company Limited, New Delhi, 2003.				
2.	Lee, C.	C. and Shu	n dar Lin. Handbook of Environmental Engineering Calculat	ions, l	Mc C	Graw	Hill,
	New Y	ork, 1999.					
3.		,	Freatment Processes in Water and Wastewater Engineering,	John	Wil	evs S	ons
2.	London			<i>2</i> 0111	., 11	- , 5 0	,
1		<i>,</i>	Water Treatment Unit Processory Division and Chaming		<u> </u>		Daar
4.	Raton, 2		s, "Water Treatment Unit Processes: Physical and Chemical	, CK	C Pr	ess, 1	soca
	Raton	7006					

17EV001		AIR POLLUTION METEOROLOGY AND MODELING	L	T	Р	C
			3	0	0	3
Course Ob	ř					
		e the emerging concepts of climate modeling and projection	ing future	clim	ate	
TT •4 T	-	derstand data analysis and application.			0.11	
Unit I	-	ric Pollution type of pollutants, gaseous and particulate pollutants, size	ofotmos	nhari	9 H	ours
particles, en	mission inve	nd Acid Deposition Industrial pollution.				
Unit II	Meteorol	<u>zy</u>			9 H	ours
Air pollutio		gy: sources of air pollution, methods for air pollution mea	surement	and c	ontro	1,
-		hat contribute to air quality degradation, basic chemistry of		-		
		ondary pollutant formation. Effect of air pollution on Hur f particulate pollutants in the respiratory system.	man healt	h, ma	terial	and
Unit III	Transpor			1		
Atmospher	ric chemical	Models cansport models, box models, three-dimensional atmosphe air quality forecasting and modelling, evaluation and valid			anspo	o <mark>urs</mark> ort
Atmospher models, cor	tic chemical mponents of and index, lo	cansport models, box models, three-dimensional atmosphera air quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction	dation, aiı	quali	anspo ty	ort
Atmospher models, con standards a Unit IV	ic chemical mponents of and index, log Dispersion	cansport models, box models, three-dimensional atmosphera air quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction	dation, ain on and ap	[•] quali plicat	anspo ty ions 9 H o	ort
Atmospher models, con standards a Unit IV Transport a	ic chemical mponents of and index, lo Dispersion and dispersion	cansport models, box models, three-dimensional atmospherary atmospherary quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models	dation, ain on and ap	quali plicat	anspo ty ions 9 H o	ort
Atmospher models, con standards a Unit IV Transport a concentrati	ic chemical mponents of and index, lo Dispersion and dispersion ons from po	ransport models, box models, three-dimensional atmospheration and particular quality forecasting and modelling, evaluation and value grange transport of pollutants. Back trajectory construction Models	dation, ain on and ap	quali plicat	anspo ty ions 9 H o	ort
Atmospher models, con standards a Unit IV Transport a concentrati modelling a	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction	 cansport models, box models, three-dimensional atmospheration and values are quality forecasting and modelling, evaluation and value grange transport of pollutants. Back trajectory construction Models and fair pollutants - wind velocity, wind speed and turbule and sources - the Gaussian Equation - atmospheric stability and - Plume rise, modelling techniques. 	dation, ain on and ap	quali plicat	anspo ty ions 9 H	ort ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction	 cansport models, box models, three-dimensional atmospheration and values are quality forecasting and modelling, evaluation and value grange transport of pollutants. Back trajectory construction Models and fair pollutants - wind velocity, wind speed and turbule and sources - the Gaussian Equation - atmospheric stability and - Plume rise, modelling techniques. 	dation, ain on and ap	quali plicat	anspo ty ions 9 H o	ort ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction	ransport models, box models, three-dimensional atmosphera air quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models n of air pollutants - wind velocity, wind speed and turbule nt sources - the Gaussian Equation - atmospheric stability n - Plume rise, modelling techniques.	dation, air on and ap once; estin	quality qualit	anspo ty ions 9 Ho 9 Ho	ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction Software o computer r	ransport models, box models, three-dimensional atmosphera air quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models n of air pollutants - wind velocity, wind speed and turbule nt sources - the Gaussian Equation - atmospheric stability n - Plume rise, modelling techniques.	dation, ain on and ap	quality qualit	anspo ty ions 9 H	ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V Exposure to	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction Software o computer r	ransport models, box models, three-dimensional atmosphera air quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models n of air pollutants - wind velocity, wind speed and turbule nt sources - the Gaussian Equation - atmospheric stability n - Plume rise, modelling techniques.	dation, air on and ap once; estin	quality qualit	anspo ty ions 9 Ho 9 Ho	ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V Exposure to	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction Software o computer r Itcomes: After com 1. Know	ransport models, box models, three-dimensional atmosphera air quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models n of air pollutants - wind velocity, wind speed and turbule nt sources - the Gaussian Equation - atmospheric stability n - Plume rise, modelling techniques. Modelling nodels for air quality.	dation, ain on and ap ence; estin r - Air pol	quality of the second s	anspo ty ions 9 He 9 He 45 He	ort ours ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V Exposure to Course Ou	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction Software o computer r Itcomes: <u>After com</u> <u>1. Know</u> 2. Know	ransport models, box models, three-dimensional atmosphera air quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models n of air pollutants - wind velocity, wind speed and turbule nt sources - the Gaussian Equation - atmospheric stability n - Plume rise, modelling techniques. Modelling nodels for air quality.	dation, ain on and ap ence; estin r - Air pol	quality of the second s	anspo ty ions 9 He 9 He 45 He	ort ours ours
Atmospher models, constandards a Unit IV Transport a concentrati modelling a Unit V Exposure to Course Ou References	ic chemical mponents of and index, lo Dispersion and dispersion and prediction o computer n Software o computer n Itcomes: After com 1. Know 2. Know s:	cansport models, box models, three-dimensional atmosphera air quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models Models n of air pollutants - wind velocity, wind speed and turbule at sources - the Gaussian Equation - atmospheric stability n - Plume rise, modelling techniques. Modelling nodels for air quality. letion of the course, Student will be able to he causes of climate change he effects of climate change on various environments and	dation, ain on and ap ence; estin r - Air pol	quality of the second s	anspo ty ions 9 He 9 He 45 He	ort ours ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V Exposure to Course Ou References 1. Rao.M	ic chemical mponents of and index, lo Dispersion and dispersion and prediction o computer r Software o computer r Itcomes: After com 1. Know 2. Know s: .N. &RaoH.	cansport models, box models, three-dimensional atmosphera ir quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models Models n of air pollutants - wind velocity, wind speed and turbule at sources - the Gaussian Equation - atmospheric stability in - Plume rise, modelling techniques. Modelling nodels for air quality. letion of the course, Student will be able to he causes of climate change he effects of climate change on various environments and V.N., "Air Pollution", Tata McGraw Hill,2006.	dation, air on and ap ence; estin - Air pol Total:	r quali plicat nating lution	anspo ty ions 9 Ho 5 45 Ho 8.	ort ours ours
Atmospher models, constandards a Unit IV Transport a concentrati modelling a Unit V Exposure to Course Ou References 1. Rao.M 2. Richard	ic chemical mponents of and index, lo Dispersion and dispersic ons from po and prediction Software o computer n Itcomes: After com 1. Know 2. Know s: .N. &RaoH. d W. Boube	cansport models, box models, three-dimensional atmospherair quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models Models n of air pollutants - wind velocity, wind speed and turbule at sources - the Gaussian Equation - atmospheric stability in - Plume rise, modelling techniques. Modelling nodels for air quality. letion of the course, Student will be able to he causes of climate change he effects of climate change on various environments and V.N., "Air Pollution", Tata McGraw Hill,2006. I, Donald L. Fox, D. Bruce Turner & Arthur C. Ster	dation, air on and ap ence; estin - Air pol Total:	r quali plicat nating lution	anspo ty ions 9 Ho 5 45 Ho 8.	ort ours ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V Exposure to Course Ou References 1. Rao.M 2. Richard Pollutio	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction Software o computer r Itcomes: After com 1. Know 2. Know s: .N. &RaoH. d W. Boubo	ransport models, box models, three-dimensional atmospherair quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models Models n of air pollutants - wind velocity, wind speed and turbule in sources - the Gaussian Equation - atmospheric stability in - Plume rise, modelling techniques. Modelling todels for air quality. Ietion of the course, Student will be able to he causes of climate change he effects of climate change on various environments and V.N., "Air Pollution", Tata McGraw Hill,2006. I, Donald L. Fox, D. Bruce Turner & Arthur C. Sterer", 2007.	dation, air on and ap ence; estin - Air pol Total:	r quali plicat nating lution	anspo ty ions 9 Ho 5 45 Ho 8.	ort ours ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V Exposure to Course Ou References 1. Rao.M 2. Richard Pollutio 3. Kennet	ic chemical mponents of and index, lo Dispersion and dispersion ons from po and prediction Software o computer r Itcomes: After com 1. Know 2. Know s: .N. &RaoH. d W. Boubo on, Hardcov th Wark, Ce	cansport models, box models, three-dimensional atmospherair quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models Models n of air pollutants - wind velocity, wind speed and turbule at sources - the Gaussian Equation - atmospheric stability in - Plume rise, modelling techniques. Modelling nodels for air quality. letion of the course, Student will be able to he causes of climate change he effects of climate change he effects of climate change on various environments and <i>V</i> .N., "Air Pollution", Tata McGraw Hill,2006. I, Donald L. Fox, D. Bruce Turner & Arthur C. Sterer", 2007. iil F. Warn, "Air pollution its origin and control", 2007.	dation, air on and ap ence; estin r - Air pol Total:	e quali pplicat nating lution model	anspo ty ions 9 H 45 H s.	ort ours ours
Atmospher models, con standards a Unit IV Transport a concentrati modelling a Unit V Exposure to Course Ou References 1. Rao.M 2. Richard Pollutio 3. Kennet	ic chemical mponents of and index, lor Dispersion and dispersion and prediction Software o computer n Itcomes: After com 1. Know 2. Know s: .N. &RaoH. d W. Boube on, Hardcov th Wark, Ce C.Chapra,	ransport models, box models, three-dimensional atmospherair quality forecasting and modelling, evaluation and valid g range transport of pollutants. Back trajectory construction Models Models n of air pollutants - wind velocity, wind speed and turbule in sources - the Gaussian Equation - atmospheric stability in - Plume rise, modelling techniques. Modelling todels for air quality. Ietion of the course, Student will be able to he causes of climate change he effects of climate change on various environments and V.N., "Air Pollution", Tata McGraw Hill,2006. I, Donald L. Fox, D. Bruce Turner & Arthur C. Sterer", 2007.	dation, air on and ap ence; estin r - Air pol Total:	e quali pplicat nating lution model	anspo ty ions 9 H 45 H s.	ort ours ours

	CLIMATE CHANGE AND MODELING	L	Т	Р	С
		3	0	0	3
Course Ob	jectives:				
	To introduce the emerging concepts of climate modeling and projecting fu	uture	clima	nte	
	change, understand data analysis and application.				
Unit I	Climate Change and Climate Variability			9 H	ours
Introductio	n – Atmosphere - weather and Climate - climate parameters (Temperature ,	Rainf	all, F	Iumic	lity,
Wind etc) -	- Equations governing the atmosphere - Numerical Weather Prediction Mod	lels -	Intro	ducti	on
to GCMs -	Application in Climate Change Projections.				
Unit II	IPCC SRES Scenarios			9 H	ours
	mental Panel on Climate Change (IPCC) - An Overview - Key Assumptior	ns - Se	cenar		
•	oryline (A1, B1, A2, B2).				
Unit III		\		0.11	
Unit III	Global Climate MODEL (GCM) and Regional Climate Model (RCM))		9 H	burs
Some typic	al GCMs (HadCM3Q-UK Met Office) - Issues with GCMs - Introduction to	\mathbf{RC}	Ms ai	nd L.A	Ms
• •	cal RCMs like PRECIS, Sim CLIM, MAGICC/SCENGENE - Advantages				
of GCMs a		und L	215 uu	v untu	500
or Genib u					
Unit IV	Downscaling Global Climate Model - An Overview			9 H	ours
variables -	f - Ensembles, Model Domain (Spatial domain and temporal domain), Resc Lateral boundary conditions - Methods of downscaling (Statistical and Dyn and their limitations.				
Unit V	Analysis /Post Processing			0.11	
				9 H C	ours
a. Model va	alidation - post processing – Introduction to Analysis tools - Ferret, R, Grad	s, ID	L, SF		ours
a. Model va ArcGIS	alidation - post processing – Introduction to Analysis tools - Ferret, R, Grad	s, ID	L, SF		ours
ArcGIS	alidation - post processing – Introduction to Analysis tools - Ferret, R, Grad change Impact - Vulnerability assessment – adaptation strategies.	s, ID	L, SF		ours
ArcGIS					
ArcGIS	change Impact - Vulnerability assessment – adaptation strategies.			rss,	
ArcGIS b. Climate	change Impact - Vulnerability assessment – adaptation strategies.			rss,	
ArcGIS b. Climate	change Impact - Vulnerability assessment – adaptation strategies. Tota			rss,	
ArcGIS b. Climate	change Impact - Vulnerability assessment – adaptation strategies. Total atcomes: After completion of the course, Student will be able to	al:		rss,	
ArcGIS b. Climate Course Ou References	change Impact - Vulnerability assessment – adaptation strategies. Tota atcomes: After completion of the course, Student will be able to 1.Know the causes of climate change 2.Know the effects of climate change on various environments and various s:	al:		rss,	
ArcGIS b. Climate Course Ou References 1. IPCC H	change Impact - Vulnerability assessment – adaptation strategies. Tota atcomes: After completion of the course, Student will be able to 1.Know the causes of climate change 2.Know the effects of climate change on various environments and various Sourth Assessment Report, Cambridge University Press, Cambridge, UK.	al:	dels.	255, 45 He	Durs
ArcGIS b. Climate Course Ou References 1. IPCC F 2. McGut	change Impact - Vulnerability assessment – adaptation strategies. Tota itcomes: After completion of the course, Student will be able to 1.Know the causes of climate change 2.Know the effects of climate change on various environments and various Sourth Assessment Report, Cambridge University Press, Cambridge, UK. fie, K. and Henderson-Sellers, A. "A Climate Modelling Primer, Third Editation	al:	dels.	255, 45 He	Durs
ArcGIS b. Climate Course Ou References 1. IPCC H 2. McGuf Sons, I	Tota Tota Tota After completion of the course, Student will be able to 1.Know the causes of climate change 2.Know the effects of climate change on various environments and various Courth Assessment Report, Cambridge University Press, Cambridge, UK. Fourth Assessment Report, Cambridge University Press, Cambridge, UK. Fie, K. and Henderson-Sellers, A. "A Climate Modelling Primer, Third Edit. td, Chichester, UK. ,2005	al:	dels. John	255, 45 He	Durs
ArcGIS b. Climate Course Ou References 1. IPCC F 2. McGuf Sons, I 3. Neelin	change Impact - Vulnerability assessment – adaptation strategies. Tota After completion of the course, Student will be able to 1.Know the causes of climate change 2.Know the effects of climate change on various environments and various 2.Know the effects of climate change on various environments and various Second Colspan="2">Tota Fourth Assessment Report, Cambridge University Press, Cambridge, UK. The colspan="2">The colspan="2">The colspan="2">The colspan="2">The colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2"	al:	dels. John	SS, 45 He Wile	ours
ArcGIS b. Climate Course Ou References 1. IPCC F 2. McGuf Sons, I 3. Neelin 4. Thoma	Tota Tota Tota After completion of the course, Student will be able to 1.Know the causes of climate change 2.Know the effects of climate change on various environments and various Courth Assessment Report, Cambridge University Press, Cambridge, UK. Fourth Assessment Report, Cambridge University Press, Cambridge, UK. Fie, K. and Henderson-Sellers, A. "A Climate Modelling Primer, Third Edit. td, Chichester, UK. ,2005	al:	dels. John	SS, 45 He Wile	ours

17EV005		ENVIRONMENTAL POLICIES AND LEGISLATION	L	Т	Р	С
			3	0	0	3
Course Ob						
	^	knowledge on the policies, legislations, institutional frame wo	ork an	d enfo	orcem	ent
		ns for environmental management in India.			0.77	
Unit I	Introducti				9 H	ours
		nd Environmental Protection – National Environmental	•		—	
		and Polluter Pays Principle – Concept of absolute liability –				
	ě.	nts and Protocols – Montreal Protocol, Kyoto agreement, Ric	o decla	aratio	<mark>1—</mark>	
		on Act, Water (P&CP) Act, Air (P&CP) Act – Institutional				
framework(SPCB/CPC	B/MOEF)				
Unit II	Water (Pa	&CP) Act, 1974			8 H	ours
Power & fu	nctions of re	egulatory agencies - responsibilities of Occupier Provision rel	ating	to pre	ventio	n
and control	Scheme of	Consent to establish, Consent to operate - Conditions of the c	onsen	ts - O	utlet -	_
Legal samp	ling procedu	ures, State Water Laboratory – Appellate Authority – Penaltie	s for v	violati	on of	
consent con	ditions etc.	Provisions for closure/directions in apprehended pollution sit	uatio	1.		
TI	A: (D. 8-C)	D) A et 1091			0 11	
Unit III		P) Act, 1981 egulatory agencies - responsibilities of Occupier Provision rel	atina	to mmo	8 H	
		Consent to establish, Consent to operate – Conditions of the c	-	_		
		ures, State Air Laboratory – Appellate Authority – Penalties				_
		Provisions for closure/directions in apprehended pollution sit			11 01	
		Trovisions for closure, directions in apprenented pointion sit	uutio			
Unit IV		ent (Protection) Act 1986			13 H	
		legation of powers – Role of Central Government - EIA Notif			-	
		one Regulation - Responsibilities of local bodies mitigation				•
-		Management - Responsibilities of Pollution Control Boards u				
		occupier, authorization - Biomedical waste rules - responsible	lities	of gei	nerato	rs
and role of	Pollution Co	ontrol Boards				
	Other To				7 H	ours
Unit V		DICS				
Unit V Relevant Pr			-Publ	ic Inte	rest	
Relevant Pr	ovisions of	Indian Forest Act, Public Liability Insurance Act, CrPC, IPC	-Publ	ic Inte	rest	
Relevant Pr	ovisions of	Indian Forest Act, Public Liability Insurance Act, CrPC, IPC ns - Supreme Court Judgments in Landmark cases.				
Relevant Pr Litigation -	ovisions of Writ petitio	Indian Forest Act, Public Liability Insurance Act, CrPC, IPC ns - Supreme Court Judgments in Landmark cases.	-Publ		erest 45 He	
Relevant Pr	ovisions of Writ petitio	Indian Forest Act, Public Liability Insurance Act, CrPC, IPC ns - Supreme Court Judgments in Landmark cases. To				
Relevant Pr Litigation -	ovisions of Writ petitio tcomes: After com	Indian Forest Act, Public Liability Insurance Act, CrPC, IPC ns - Supreme Court Judgments in Landmark cases. To pletion of the course, Student will be able to				
Relevant Pr Litigation -	ovisions of Writ petitio tcomes: After com 1. Know	Indian Forest Act, Public Liability Insurance Act, CrPC, IPC ns - Supreme Court Judgments in Landmark cases. To	tal:		45 H	

	;	MEMBRANE TECHNOLOGIES FOR WATER AND WASTE WATER TREATMENT	L	Т	Р	С
			3	0	0	3
Course (bjectives:		-	-	-	
	To introduce	e the concept and principles of membrane separation and its ap	plica	ations	in w	ater
		ater treatment.				
Unit I		Filtration Processes			10 He	
Flow filt porous, n	ration - Memb	ystems- Theory of Membrane separation – mass Transport Charane Filtration- Flux and Pressure drop -Types and choice metric and asymmetric – Plate and Frame, spiral wound and hombranes	e of	mem	brane	
Unit II	Membrane	Systems			10 He	ours
	· ·	s and applications - Ultra filtration principles and applica				
	• •	applications – Reverse Osmosis: Theory and design of module			•	ant
		lications – Electro dialysis : Ion exchange membranes, proc				
-	-	nembrane – Liquid Pertraction – Supported Liquid Membrane				
-		brane manufactures – Membrane Module/Element designs – Membrane systems - pump types and Pump selection– Plant op			-	stem
-	cs of Membrane		pera	.10115	_	
Leononn		systems				
Unit III		Bioreactors			9 Ho	
Principle	s, Fouling and	al Perspective of MBRs, Biotreatment Fundamentals, Biomass Fouling Control, MBR Design Principles, Design Assignment ommercial Technologies, Case Studies.				
Unit IV	Pretreatme	nt Systems			8 He	ours
Membrar	e Fouling – Co	ntrol of Fouling and Concentration Polarisation-Pretreatment n			nd	ours
Membrar strategies	e Fouling – Co – monitoring o				nd	ours
Membrar strategies	e Fouling – Co	ntrol of Fouling and Concentration Polarisation-Pretreatment n			nd	ours
Membrar strategies	e Fouling – Co – monitoring o	ntrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical			nd	
Membran strategies Biofoular Unit V	e Fouling – Con – monitoring o at control.	ntrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical	clea	ning	nd , 8 H o	
Membrar strategies Biofoular Unit V Case stud	e Fouling – Cor – monitoring o at control. Case Studio ies on the desig	ntrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical	clea	ning	nd , 8 H o	
Membrar strategies Biofoular Unit V Case stud	e Fouling – Cor – monitoring o at control. Case Studio ies on the desig	ntrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical son of membrane-based water and wastewater treatment systems – Desalination of brackish water.	clea =	ning ero L	nd , 8 H (iquid	ours
Membrar strategies Biofoular Unit V Case stud effluent d	e Fouling – Cor – monitoring on t control. Case Studio ies on the designischarge Plants	ntrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical s n of membrane-based water and wastewater treatment systems	clea =	ning ero L	nd , 8 H o	ours
Membran strategies Biofoular Unit V Case stud effluent of Course (e Fouling – Con – monitoring of at control. Case Studio ies on the desig ischarge Plants Dutcomes:	ntrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical s n of membrane-based water and wastewater treatment systems – Desalination of brackish water. Total	clea =	ning ero L	nd , 8 H (iquid	ours
Membran strategies Biofoular Unit V Case stud effluent of Course (e Fouling – Cor – monitoring o at control. Case Studio ies on the desig ischarge Plants Dutcomes:	ntrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical son of membrane-based water and wastewater treatment systems – Desalination of brackish water.	s – ze	ning ero L	nd , 8 H d iquid 45 H d	ours
Membran strategies Biofoular Unit V Case stud effluent o Course (e Fouling – Cor – monitoring o at control. Case Studio ies on the desig ischarge Plants Dutcomes:	htrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical s n of membrane-based water and wastewater treatment systems – Desalination of brackish water. Total n of the course, Student will be with main membrane processes, principles, separation	s – ze	ning ero L	nd , 8 H d iquid 45 H d	ours
Membran strategies Biofoular Unit V Case stud effluent o Course (e Fouling – Con – monitoring of at control. Case Studio ies on the designischarge Plants Dutcomes: After completion 1. familiar applicati	htrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical s n of membrane-based water and wastewater treatment systems – Desalination of brackish water. Total n of the course, Student will be with main membrane processes, principles, separation	s – ze	ning ero L	nd , 8 H d iquid 45 H d	ours
Membrar strategies Biofoular Unit V Case stud effluent d Course (e Fouling – Cor – monitoring of at control. Case Studio ies on the desig ischarge Plants Dutcomes: After completion 1. familiar applicati 2. understa	htrol of Fouling and Concentration Polarisation-Pretreatment n of Pretreatment – Langlier Index, Silt Density Index, Chemical ss n of membrane-based water and wastewater treatment systems – Desalination of brackish water. Tota n of the course, Student will be with main membrane processes, principles, separation ons	s – ze	ning ero L	nd , 8 H d iquid 45 H d	ours

17EV009		REMOTE SENSING AND GIS APPLICATIONS IN ENVIRONMENTAL MANAGEMENT	L	T	Р	С
			3	0	0	3
Course Ol						
	1. To ed	ucate the students on aspects of Remote Sensing				
	2. Devel	lop the different remote sensing technique				
	3. To ed	ucate the students on aspects of GIS and data management				
	4. Devel	op the GIS Applications for monitoring and management of	environ	ment		
Unit I	Remote S	ensing Elements			8 H	ours
electromag	gnetic radiati	Principles of remote sensing, components of Remote Sensing ion, Electromagnetic spectrum, Energy interaction, Spectra Energy recording technology.	-	•		
Unit II	Remote S	Sensing Technology			9 H	ours
along track	k scanning, N	ote Sensing Systems, Aerial photographs, Photographic system Multispectral remote sensing, Thermal remote sensing, Micro				
	P	ensors, RADAR, LIDAR				
Social imp	Social Im	ensors, RADAR, LIDAR pact Assessment and EIA Documentation ent - Relationship between social impacts and change in com- ents. Individual and family level impacts. Communities in tra			9 Ho nenta	
Social imp institutiona of EIA find preparatior	Social Impact assessment al arrangement dings – plant n.	pact Assessment and EIA Documentation ent - Relationship between social impacts and change in comp ents. Individual and family level impacts. Communities in tran ning – organization of information and visual display materia	nsition 1	Docui port	nenta	tion
Social imp institutiona of EIA find preparatior Unit IV Environme Rehabilitat	Social Im pact assessme al arrangeme dings – plant n. Environn ental Manage tion Plans –	pact Assessment and EIA Documentation ent - Relationship between social impacts and change in com- ents. Individual and family level impacts. Communities in tra	nsition 1 ls – Rep ation ar	Docui port	menta	tion
institutiona of EIA find preparation Unit IV Environme Rehabilitat	Social Impact assessme al arrangeme dings – plant n. Environn ental Manage tion Plans – and Quality a	apact Assessment and EIA Documentation ent - Relationship between social impacts and change in comments. Individual and family level impacts. Communities in transing – organization of information and visual display materia nental Management Plan ement Plan - preparation, implementation and review – Mitig Policy and guidelines for planning and monitoring programm	nsition 1 ls – Rep ation ar	Docui port	menta	ours
Social imp institutiona of EIA find preparation Unit IV Environme Rehabilitat – Ethical a Unit V Environme Assessmen methods – contaminar	Social Im pact assessme al arrangeme dings – plant n. Environn ental Manage tion Plans – and Quality a Environn ental risk ass nt – Exposur Event tree a	apact Assessment and EIA Documentation ent - Relationship between social impacts and change in comments. Individual and family level impacts. Communities in transing – organization of information and visual display materia nental Management Plan ement Plan - preparation, implementation and review – Mitig Policy and guidelines for planning and monitoring programm aspects of Environmental Impact Assessment- Case Studies. nental Risk Assessment and Management sessment framework-Hazard identification -Dose Response Er er Factors, Tools for Environmental Risk Assessment– HAZC and fault tree analysis – Multimedia and multipath way expose aracterization Risk communication - Emergency Preparedness	nsition I ls – Rep ation ar nes – Po valuation P and F ure mod	Documport Docump	menta 10 H oject a 9 H xposu of	tion ours udit ours ure
Social imp institutiona of EIA find preparation Unit IV Environme Rehabilitat – Ethical a Unit V Environme Assessmen methods – contaminar	Social Im pact assessme al arrangeme dings – plant n. Environn ental Manage tion Plans – and Quality a Environn ental risk ass nt – Exposur Event tree a nt- Risk Cha	apact Assessment and EIA Documentation ent - Relationship between social impacts and change in comments. Individual and family level impacts. Communities in transing – organization of information and visual display materia nental Management Plan ement Plan - preparation, implementation and review – Mitig Policy and guidelines for planning and monitoring programm aspects of Environmental Impact Assessment- Case Studies. nental Risk Assessment and Management essesment framework-Hazard identification -Dose Response Er e Factors, Tools for Environmental Risk Assessment– HAZC and fault tree analysis – Multimedia and multipath way expose aracterization Risk communication - Emergency Preparedness as	nsition I ls – Rep ation ar nes – Po valuation P and F ure mod	Documport port nd sst pro pn – E FEMA leling –Desi	menta 10 H oject a 9 H xposu of	tion ours udit ours ire risk
Social imp institutiona of EIA find preparation Unit IV Environme Rehabilitat – Ethical a Unit V Environme Assessmen methods – contaminan manageme	Social Impact assessme al arrangeme dings – plant n. Environn ental Manage tion Plans – and Quality a Environn ental risk ass nt – Exposur Event tree a nt- Risk Cha ent programs	apact Assessment and EIA Documentation ent - Relationship between social impacts and change in comments. Individual and family level impacts. Communities in transing – organization of information and visual display materia nental Management Plan ement Plan - preparation, implementation and review – Mitig Policy and guidelines for planning and monitoring programm aspects of Environmental Impact Assessment- Case Studies. nental Risk Assessment and Management essesment framework-Hazard identification -Dose Response Er e Factors, Tools for Environmental Risk Assessment– HAZC and fault tree analysis – Multimedia and multipath way expose aracterization Risk communication - Emergency Preparedness as	nsition I Is – Rej ation ar nes – Po valuatic DP and F ure mod s Plans	Documport port nd sst pro pn – E FEMA leling –Desi	nenta 10 H oject a 9 H xposu of gn of	tion ours udit ours ire risk
Social imp institutiona of EIA find preparation Unit IV Environme Rehabilitat – Ethical a Unit V Environme Assessmen methods – contaminan manageme	Social Im pact assessme al arrangeme dings – plant n. Environn ental Manage tion Plans – and Quality a Environn ental risk ass at – Exposur Event tree a nt- Risk Cha ent programs	apact Assessment and EIA Documentation ent - Relationship between social impacts and change in comments. Individual and family level impacts. Communities in transing – organization of information and visual display materia nental Management Plan ement Plan - preparation, implementation and review – Mitig Policy and guidelines for planning and monitoring programmaspects of Environmental Impact Assessment- Case Studies. nental Risk Assessment and Management gessment framework-Hazard identification -Dose Response Ere Factors, Tools for Environmental Risk Assessment– HAZC and fault tree analysis – Multimedia and multipath way exposite aracterization Risk communication - Emergency Preparedness s. T pletion of the course, Student will be able to	nsition I Is – Rej ation ar nes – Po valuatic DP and F ure mod s Plans –	Documport	nenta 10 H oject a 9 H xposu of gn of 45 H	tion ours uudit ours are risk
Social imp institutiona of EIA find preparation Unit IV Environme Rehabilitat – Ethical a Unit V Environme Assessmen methods – contaminar	Social Impact assessme al arrangeme dings – plant n. Environn ental Manage tion Plans – and Quality a Environn ental risk ass nt – Exposur Event tree a nt- Risk Cha ent programs utcomes: After com 1. Under	apact Assessment and EIA Documentation ent - Relationship between social impacts and change in comments. Individual and family level impacts. Communities in transing – organization of information and visual display materia nental Management Plan ement Plan - preparation, implementation and review – Mitig Policy and guidelines for planning and monitoring programmers aspects of Environmental Impact Assessment- Case Studies. nental Risk Assessment and Management Sessment framework-Hazard identification -Dose Response Erre Factors, Tools for Environmental Risk Assessment – HAZC and fault tree analysis – Multimedia and multipath way exposite aracterization Risk communication - Emergency Preparedness S.	nsition I Is – Rej ation ar nes – Po valuatic DP and F ure mod s Plans –	Documport	nenta 10 H oject a 9 H xposu of gn of 45 H	tion ours uudit ours are risk