	SEM	ESTI	ER V						
Course Code	Course Name	L	Т	Р	С		Maxiı Marl		Category
						CIA	ES	Total	
Theory Cour	se								
1902BM501	Biomedical Equipments	3	0	0	3	40	60	100	PC
1902BM502	Medical Optics	3	0	0	3	40	60	100	PC
1902BM503	Microprocessor and its Applications	3	0	0	3	40	60	100	PC
1902BM504	Biomedical Digital Signal Processing	3	2	0	4	40	60	100	PC
1902BM505	Bio Process Control	3	0	0	3	40	60	100	PC
	Professional Elective - I	3	0	0	3	40	60	100	PE
Laboratory	Course								
1902BM551	Biomedical Digital Signal Processing Laboratory	0	0	2	1	50	50	100	PC
1902BM552	Biosensors and Transducers Laboratory	0	0	2	1	50	50	100	PC
1904BM553	Microprocessor and Applications Laboratory	0	0	2	1	50	50	100	PC
1904GE551	Life Skills: Aptitude I	0	0	2	1	100	-	100	EEC
Audit Course									
1901MCX03	Essence of Indian Traditional Knowledge	2	0	0	0	100	0	100	MC
	Total	20	2	8	23	490	510	1000	

	SEM	EST	ER V	Ι					
Course	Course Name	L	Т	Р	С	Max	imum	Marks	Cotogomy
Code	Course Maine	L	I	I	C	CA	ES	Total	Category
Theory Cour	se				-				
1901 BM6 01	Diagnostic and Therapeutic Equipment- I	3	0	0	3	40	60	100	PC
1902BM602	Analog and Digital Communication	3	0	0	3	40	60	100	PC
1902BM603	Biomaterials	3	0	0	3	40	60	100	PC
	Professional Elective - II	3	0	0	3	40	60	100	PE
	HSS Elective	3	0	0	3	40	60	100	HSS
Laboratory C	Course								
1902BM651	Diagnostic and Therapeutic Equipment Laboratory	0	0	2	1	50	50	100	PC
1902BM652	Analog and Digital Communication Laboratory	0	0	2	1	50	50	100	PC
1902BM653	Mini Project	0	0	2	1	50	50	100	EEC
1902BM654	Industrial Visit Presentation	0	0	2	1	100	-	100	EEC
1904GE651 Life Skills: Aptitude II GD		0	0	2	1	100	0	100	EEC
	Total	15	0	10	20	400	400	900	

	SEM	ESTI	ER V	Π					
Course	Course Name	L	Т	Р	С	Max	imum	Catagony	
Code	Course Name	L	I	r	C	CA	ES	Total	Category
Theory Cour	se						-		
1902BM701	Diagnostic and Therapeutic Equipment- II	3	0	0	3	40	60	100	PC
1902BM702	Rehabilitation Engineering	3	0	0	3	40	60	100	PC
	Universal Human values and ethics	3	0	0	3	40	60	100	PC
	Professional Elective - III	3	0	0	3	40	60	100	PE
	Open Elective	3	0	0	3	40	60	100	OE
Laboratory (Course								
1902BM751	Hospital Training	0	0	2	1	100	-	100	EEC
1904BM752	In-plant Training/ Internship Presentation	0	0	0	1	100	-	100	EEC
1904GE751	Life Skills : Comprehensive Viva	2	0	0	1	100	-	100	EEC
	Total	20	0	2	18	590	410	1000	

		SEI	ME	STE	CR V	VIII					
Course	Course Name			L	Т	Р	С	Max	imum l	Marks	Catagony
Code	Course Maine			L	L	Γ	C	CA	ES	Total	Category
Theory Cours											
1902BM801	Radiological Equipment			3	0	0	3	40	60	100	PC
	Professional Elective –IV			3	-	-	3	40	60	100	PE
	Professional Elective –V			3	-	-	3	40	60	100	PE
Laboratory Course											
1904BM851	Project Work			-	-	14	07	50	50	100	EEC
	Total		-	9	-	14	16	170	230	400	
Course	ourse Course Name		Т	Р		C -		imum 🛛	Marks		ategory
Code		L					CA	ES	Total	C	ategory
	PROFE	SSI	ON.	AL	EL	ECT	IVES	<u>– I</u>			
1903BM001	Bio MEMS	3	0	0		3	40	60	100		PE
1903BM002	Nanotechnology in Medicine	3	0	0		3	40	60	100		PE
1903BM003	Bio Signal Processing and Systems	3	0	0		3	40	60	100		PE
1903BM004	Nuclear Medicine	3	0	0		3	40	60	100		PE
	PROFE	SSIC)NA	AL I	ELF	ECTI	VES -	- II			
1903BM005	Regulatory Requirements in Pharmaceutical Industries	3	0	0		3	40	60	100		PE
1903BM006	Bio Analytical methods and Instruments	3	0	0		3	40	60	100		PE
1903BM007	Tele Health Technologies	3	0	0		3	40	60	100		PE
1903BM008	Medical Informatics	3	0	0		3	40	60	100		PE
	PROFES	SSIO	NA	LE	CLE	CTI	VES -	- III			_

1903BM013	Tissue Engineering and R-DNA technology	3	0	0	3	40	60	100	PE			
1903BM014	Medical Imaging	3	0	0	3	40	60	100	PE			
1903BM015	Pattern Recognition in Medicine	3	0	0	3	40	60	100	PE			
1903BM016	3D Printing Technology	3	0	0	3	40	60	100	PE			
	PROFES	SSIC	N A	L EI	ECT	IVES -	- IV					
1903BM017	Rapid Prototyping	3	0	0	3	40	60	100	PE			
1903BM018	Wearable Systems	3	0	0	3	40	60	100	PE			
1903BM019	Disaster Managements	3	0	0	3	40	60	100	PE			
1903BM020	Special Surgical Equipment	3	0	0	3	40	60	100	PE			
PROFESSIONAL ELECTIVES – V												
1903BM021	Biometric Systems	3	0	0	3	40	60	100	PE			
1903BM022	Robotics and Medicine	3	0	0	3	40	60	100	PE			
1903BM023	Ergonomics	3	0	0	3	40	60	100	PE			
1903BM024	Physiological modeling	3	0	0	3	40	60	100	PE			
		HS	S El	LEC	TIVE	S						
1901HS001	Innovation &											
	Entrepreneurship	3	0	0	3	40	60	100	HSS			
	Fundamendals											
1901HS002	Intellectual Property Rights	3	0	0	3	40	60	100	HSS			
1901HS003	Start Up Entrepreneurship	3	0	0	3	40	60	100	HSS			
1901HS004	Business model Innovation	3	0	0	3	40	60	100	HSS			
OPEN	ELECTIVES OFFERED	BY	ſĦŀ	E DEI	PART	MENT	OF B	IOMED	ICAL ENGG			
1903BM009	Biomedical Engineering	3	0	0	3	40	60	100	OE			
1903BM010	Design and development of biomedical systems	3	0	0	3	40	60	100	OE			
1903BM011	Bio Process Modeling	3	0	0	3	40	60	100	OE			
1903BM012	Instrumentation Engineering	3	0	0	3	40	60	100	OE			

1904GE451	LIFE SKILLS : VERBAL ABILITY	L	T	Р	C
COURSE OBJE		0	0	2	1
	students comprehend and use vocabulary y appropriate reading strategies for interpreting technical and non-technic	al docu	mente	used in	ioh-
	settings.	ai uocu	ments	useu m	100-
	re students will be able to use targeted grammatical structures meaningfull	v and a	nnronri	atelv ir	oral
	tten production.	y und u	ppropri	atory in	i orur
	ble the students to arrange the sentences in meaningful unit and to determ	nine wh	ether co	onstruc	tions
rely on	active or passive voice				
5. To App	bly the principles of effective business writing to hone communication skills				
MODULE I	VOCABULARY USAGE			6	hours
	ynonyms and Antonyms based on Technical terms – Single word Substitu	ition –	Newsp		
and video listeni			1 (c (15)	uper, r	luulo
MODULE II	COMPREHENSION ABILITY				
Skimming and S	Scanning – Social Science passages – Business and Economics passages –	latest p	olitical	and cu	irrent
	ages – Theme detection – Deriving conclusion from passages	1			
MODULE III	BASIC GRAMMAR AND ERROR DETECTION			6	hours
	edundancy – Ambiguity – Concord - Common Errors – Spotting Errors –	- Senter	nce imp		
	FAQ in Competitive exams.				
MODULE IV				6	hours
	es – Cloze Test - Idioms and Phrases – Active and passive voice – Spelling t	est.			
MODULE V	APPLICATION OF VERBAL ABILITY		D '1		hours
	g - Business Vocabulary - Delivering Good / Bad News - Media Communi Proposal writing – Essay writing– Indexing –Market surveying.	cation	- Email	Etique	ette –
Report Writing	Troposar writing – Essay writing– indexing – Market surveying.	T (20.110	
COURSE OUT	COMES	10	DTAL:	30 H	JUKS
COURSE OUT	Construct new words in their day to day communication.				
CO2	Predict the information swiftly while reading passages.				
CO3	Elaborate their oral and written communication.				
CO4	Rephrase the sentences and able to identify the voice of the sentence.				
CO5	Summarize their knowledge of the best practices to craft effective business	docum	ents		
REFERENCES	Make use of the etiquette in business.				
	and Meenakshi Upadhyav, How to Prepare for Verbal Ability and Reading	Comp	rehensi	on for ([¬] AT
	blication, Seventh Edition 2017	comp	enensi		,
	and Vikas Aggarwal, Quick Learning Objective General English, S. Chand	l Publis	hing Ho	ouse, 2	017
3. Dr.K.Alex, S	oft Skills, S.Chand Publishing House, Third Revise Edition, 2014				
•	urphy, Essential English Grammar in Use, Cambridge University press, N	lew De	lhi, Thi	rd Edit	tion,
2007					

		Bio MEMS	L	Т	Р	C
	_		3	2	0	4
Course Objectiv		The student should be made to:				
	1.	Learn various MEMS fabrication techniques.				
	2.	Understand different types of sensors and actuators and their principle	es of op	peration	at the	
		micro scale level.				
	3.	Know the application of MEMS in different field of medicine				
Unit I		MEMS MATERIALS AND FABRICATION			12 H	Iours
piezoresistors, Ga	allium Arse chining, wa	vstems, materials for MEMS – active substrate materials-Silicon and i enide, quartz, polymers. Micromachining photolithography, thin film of afer bonding, LIGA.				1
Unit II		HANICAL AND THERMAL SENSORS AND ACTUATORS				Iours
		omechanics, fracture and thin film mechanics. Mechanical sensors an				
		in, pressure and flow measurements, Thermal sensors and actuators-	actuato	r based	on the	rmal
		thermal resistor, Shape memory alloys- Inertia sensor, flow sensor			10.7	
Unit III		ECTROSTATIC AND PIEZOELECTRIC SENSORS AND ACTUATORS				Iours
		a sensor, Pressure sensor, flow sensor, tactile sensor, comb drive. Pro	perties	of piezo	pelectri	ic
	lectric sens	or and actuator – inchworm motor, inertia sensor, flow sensor.				
Unit IV		MICROFLUIDIC SYSTEMS				Iours
		equation, momentum equation, equation of motion, laminar flow in cir				
		rometer and nanoscale. Microscale fluid, expression for liquid flow in				ation
	ophoresis,	microfluid dispenser, microneedle, micropumps-continuous flow syst	em, mi	cromix		
Unit V		A DDI ICATIONS OF BIOMEMS			10 T	Inne
CAD C MENTO	D 11	APPLICATIONS OF BIOMEMS		.1 1		10015
microsystem appr	roaches to j	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor.		Biosens	ors- se	ensors
microsystem appr for glucose, uric a	roaches to j acid, urea a	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total:		Biosens		ensors
microsystem appr	roaches to j acid, urea a	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor.		Biosens	ors- se	ensors
microsystem appr for glucose, uric a Further Reading	roaches to j acid, urea a gs:	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Bio techniques using microtechnology, Shrinking Technologies		Biosens	ors- se	ensors
microsystem appr for glucose, uric a	roaches to j acid, urea a gs:	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to:		Biosens	ors- se	
microsystem appr for glucose, uric a Further Reading	roaches to j acid, urea a gs: es: After cor	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to		Biosens	ors- se	ensors
microsystem appr for glucose, uric a Further Reading	acid, urea a gs: After cor 1. 2.	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles	livery,	Biosens 4	ors- se 5+15 I	ensors Iours
microsystem appr for glucose, uric a Further Reading	acid, urea a gs: After con 1. 2.	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles Scale level.	livery,	Biosens 4	ors- se 5+15 I	ensors Iours
microsystem appr for glucose, uric a Further Reading Course Outcome	acid, urea a gs: After con 1. 2.	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles	livery,	Biosens 4	ors- se 5+15 I	ensors Iours
microsystem appr for glucose, uric a Further Reading Course Outcome References: 1. Tai Ran New Del	roaches to j acid, urea a gs: After cor 1. 2. 3. Hsu, —MI lhi, 2002. (very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles Scale level. Apply MEMS in different field of medicine. EMS and Microsystems Design and Manufacturel, Tata McGraw Hill Unit I, II, III & IV).	of op Publis	4. eration a	at the n	micro
microsystem appr for glucose, uric a Further Reading Course Outcome References: 1. Tai Ran New Del 2. Wanjun V).	roaches to j acid, urea a gs: After cor 1. 2. 3. Hsu, —MI lhi, 2002. (very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles Scale level. Apply MEMS in different field of medicine. EMS and Microsystems Design and Manufacturel, Tata McGraw Hill	of op Publis	4. eration a	at the n	nsors Iours micro
microsystem appr for glucose, uric a Further Reading Course Outcome References: 1. Tai Ran New Del 2. Wanjun V). Text Books:	acid, urea a acid, acid, acid	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles Scale level. Apply MEMS in different field of medicine. EMS and Microsystems Design and Manufacturell, Tata McGraw Hill Unit I, II, III & IV). phen A.Soper, BioMEMS: Technologies and Applications , CRC Pre	livery,	Biosens 4 eration : hing Cc w York,	at the 1	nsors Iours micro
microsystem appr for glucose, uric a Further Reading Course Outcome 1. Tai Ran New Del 2. Wanjun V). Text Books: 1. Mar	roaches to j acid, urea a gs: After con 1. 2. 3. Hsu, —MI lhi, 2002. (Wang, Ste	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles Scale level. Apply MEMS in different field of medicine. EMS and Microsystems Design and Manufacturell, Tata McGraw Hill Unit I, II, III & IV). phen A.Soper, BioMEMS: Technologies and Applications , CRC Pre- 1 —Fundamentals of Microfabrication: the Science of Miniaturization	of op Publis	Biosens 4 eration a hing Cc w York,	at the pompany , 2007.	micro
microsystem appr for glucose, uric a Further Reading Course Outcome 1. Tai Ran New Del 2. Wanjun V). Text Books: 1. Mar 2. Nad	roaches to j acid, urea a gs: After cor 1. 2. 3. Hsu, —MI lhi, 2002. (Wang, Step rc J. Madou lim Maluf,	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles Scale level. Apply MEMS in different field of medicine. EMS and Microsystems Design and Manufacturell, Tata McGraw Hill Unit I, II, III & IV). phen A.Soper, BioMEMS: Technologies and Applications , CRC Pre	of op Publis	Biosens 4 eration a hing Cc w York,	at the pompany , 2007.	micro
microsystem appr for glucose, uric a Further Reading Course Outcome 1. Tai Ran New Del 2. Wanjun V). Text Books: 1. Mar 2. Nad Edit	roaches to j acid, urea a gs: After cor 1. 2. 3. Hsu, —MI Ihi, 2002. (Wang, Ste trc J. Madou lim Maluf, tion, Artecl	very, micro total analysis systems (MicroTAS) detection and measure polymerase chain reaction (PCR),DNA sensor, MEMS based drug del and triglyceride sensor. Total: Bio techniques using microtechnology, Shrinking Technologies At the end of the course, the student should be able to: npletion of the course, Student will be able to Discuss various MEMS fabrication techniques. Explain different types of sensors and actuators and their principles Scale level. Apply MEMS in different field of medicine. EMS and Microsystems Design and Manufacturel, Tata McGraw Hill Unit I, II, III & IV). phen A.Soper, BioMEMS: Technologies and Applications , CRC Pre- n —Fundamentals of Microfabrication: the Science of Miniaturization Kirt Williams. —An introduction to Microelectro Mechancial System	of op Publis ess, Ne I, CRC	Biosens 4 eration hing Cc w York, <u>Press,2</u> neering	at the pompany , 2007.	micro

Professional Elective I (PE)

100203 5002	1			T	n	
1903BM002		Nanotechnology in Medicine	L	Т	Р	С
	-		3	0	0	3
		(For B.E.,BME)				
Course Objectiv		The student should be made to:				
	1.	To Learn various concepts of nanomedicine.				
	2.	To Understand nanobiomaterials and its biocompatibility				
	3.	To Know principles of bio nanotechnology and nanostructures.				
	4.	To Discuss about protein and DNA based Nano Structure				
	5.	To Describe the Nano Bio Analytics.				
UNIT I		Introduction			91	Hours
Introduction an	d Ra	ationale for Nanotechnology in Cancer Therapy - Passive Targe	eting of	of Sol	id Tu	mors:
		rinciples and Physicochemical Aspects of Delivery Systems - Active				
		on Potential Nanotechnology Applications Nanobiotechnology in Dr				oscale
Delivery of The	rapeu	tics – Nano suspension Formulations Viruses as Nanomaterials for Da	rug De	livery		
UNIT II		Nanobiomaterials And Biocompatibility				Hours
		perties of Bio materials – <mark>Nanobiomaterials –NanoCeramics – Nanop</mark>				
		arbon Based nanomaterials Surface modification - Textured and Pon				
		cules - Cell-biomaterial interactions - immune response - In Vitro ar	nd In V	vivo as	sessm	ent of
tissue compatibi	lity					
UNIT III		Structural & Functional Principles Of Bio Nano technolog				Hours
·		es-Phytosomes, Polysacharides – Peptides –Nucleic acids – DNA				
		: linear, rotary mortors - Immunotoxins - Membrane transporters an	d pum	ps – A	Antibo	dies –
	ibodi	es – immunoconjugates – limitations of natural biomolecules				
UNIT IV		Protein And DNA Based Nanostructures				Hours
	•	and assembly – lipid chips – S – Layers as Templates – engineered na	-		NA-P	rotein
	DNA	-based Metallic Nanowires and Networks, DNA–Gold-Nanoparticle (Conjug	ates	0.1	
UNIT V		Nano Bio-Analytics				Hours
		m Dots for Biological Labeling – Nanoparticle Molecular Labels – Su				
		ructure by Atomic Force Microscopy and Molecular Pulling -				
		anoparticles for Surface – Enhanced Raman Scattering and Surface	e Plasi	non k	Resona	nce –
Bioconjugated S	filica	Nanoparticles for Bioanalytical Applications	T	4.1	45 1	T
E4h arr D a a df	~~~		1(otal:	45]	Hours
Further Readin		ing Neuroperista in Madisia.				
		ine, Nanoparticles in Medicine				
Course Outcom		er completion of the course, Student will be able to				
		Understand the Basics of Nanobiotechnology in Relation to Nanomed	icine			
	2.	Understand Nano biomaterials and its biocompatibility				
		· ·				
	3.	Know principles of bio nanotechnology and nano structures.				
	4.	. Discuss about protein and DNA based Nano Structure				
	5.	Describe the Nano Bio Analytics				
Text Books:						
1. Springer	r Har	dbook of Nanotechnology by Bharat Bhushan 2004.(Unit I – V)				
2. Encyclo	pedia	a of Nanotechnology - Hari Singh Nalwa 2004. (Unit I – V)				
Defense		-				
References:						

B.E. – Biomedical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2019

Approved in IV Academic Council Meeting held on 25.05.2019

	1. Molecular Cell Biology, Harvey Lodish, Published by W.H. Freeman & Company
2.	Biomaterials: A Nano Approach, S Ramakrishna, M Ramalingam, T.S. Sampath Kumar, Winston O.
	Soboyejo, Published by CRC Press
3.	Bionanotechnology: Lessons from Nature, D S. Goodsell, by John Wiley & Sons, Inc
4.	Nanobiotechnology: Concepts, Applications and Perspectives, (edited by C. M. Niemeyer and C. A. Mirkin),
	Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,
_	

5. Nanobiotechnology: Concepts, Applications and Perspectives, Edited by Christof M. Niemeyer and Chad A. Mirkin, Wiley-VCH, 2004, ISBN 3527306587

1904GE551	LIFE SKILLS: APTITUDE - I	L	Τ	P	С
		0	0	2	1
Course Objectives:					
	m solving skill and to improve intellectual skill of the			~ ~ ~	
	ally evaluate various real life situations by resorting to	Anal	ysis	Of k	ey issues
and factors					
	nstrate various principles involved in solving mathen	natica	alpro	blem	s and
	e time taken for performing job functions.				
	cal ability of students and critical thinking of Student				
	and entited unitking of Student				
UNIT I	INTRODUCTION TO NUMBER SYSTEM, BASI	C		5 Ho	ours
	SHORTCUTS OF ADDITION,	Ĩ			
	MULTIPLICATION, DIVISION				
Classification of numbers –	Types of Numbers - Divisibility rules - Finding the	he ui	nits o	ligit	- Finding
remainders in divisions invol	lving higher powers - LCM and HCFModels - Fraction	ons a	nd D	oigits	– Square,
	bots – Shortcuts of addition, multiplication, Division.			C	•
	-				
UNIT II	RATIO AND PROPORTION, AVERAGES			5 Ho	ours
Definition of Ratio - Properti	es of Ratios - Comparison of Ratios - Problems on Ra	tios -	Cor	npou	nd Ratio -
Problems on Proportion, Me	an proportional and Continued Proportion Definition	n of .	Aver	age	- Rules of
Average - Problems on Ave	rage - Problems on Weighted Average - Finding aver	age u	sing	assu	med mean
method.					
	PERCENTAGES, PROFIT AND LOSS			5 Ho	
	nverting a percentage into decimals - Converting a D				
	actions - Problems on percentages - Problems on Pro				
	and Selling price - Discount and Marked Price - Two				
same Cost Price - Two differ	ent articles sold at same Selling Price - Gain% / Loss%	% on	Selli	ng P	rice.
UNIT IV	CODING AND DECODING, DIRECTION SENSI	<u>ר</u>		5 Ho	
	ers - Coding using different set of letters - Coding into				
	by drawing the paths - Finding the net distance travelle				
	ems on shadows - Problems on direction sense using s				
- FTODIETHS OH CIUCKS - PTODI	enis on shadows - Frobletiis on direction sense using s	ymbo	JIS al	iu no	rati0118.
UNIT V	NUMBER AND LETTER SERIES NUMBER			5 Ho	ours
	ANDLETTER ANALOGIES, ODD MAN OUT				

Difference series - Product series - Squares series - Cubes series - Alternate series - Combination series -Miscellaneous series - Place values of letters - Definition of Analogy - Problems on number analogy -Problems on letter analogy - Problems on verbal analogy - Problems on number Odd man out - Problems on letter Odd man out - Problems on verbal Odd man out

		Total:	30 Hours
ASSESS	SMENT PATTERN :		
1.	Two tests will be conducted ($25 * 2$) - 50 marks		
2.	Five assignments will be conducted (5*10) - 50 Marks		

Course Outcomes:

After completion of the course, Student will be able to:

- 1. Learners should be able to understand number and solving problems least timeusing various shortcut
- 2. Solve problems on averages; compare two quantities using ratio and proportion.
- 3. Calculate concept of percentages, implement business transactions using profitand loss.
- 4. Workout concepts of Coding and Decoding, ability to visualize directions and understand the logic behind a sequence.
- 5. Learners should be able to find a series the logic behind a sequence.

References:

- 1. Arun Sharma, "How to Prepare for Quantitative Aptitude for the CAT", 7thedition, McGraw Hills publication, 2016.
- 2. Arun Sharma, "How to Prepare for Logical Reasoning for CAT", 4th edition,McGraw Hills publication, 2017.
- 3. R S Agarwal, "A modern approach to Logical reasoning", revised edition, S.Chand publication, 2017.
- 4. R S Agarwal, "Quantitative Aptitude for Competitive Examinations", revisededition, S.Chand publication, 2017.
- 5. Rajesh Verma, "Fast Track Objective Arithmetic", 3rd edition, Arihantpublication, 2018.
- 6. B.S. Sijwalii and InduSijwali, "A New Approach to REASONING Verbal & Non-Verbal", 2nd edition, Arihnat publication, 2014.

	Professional Elective – II (PE)				
	BIO ANALYTICAL METHODS AND	L	Т	Р	С
	INSTRUMENTATION				1
		3	0	0	3
	(For B.E.,BME)				
Course Objectiv	ves: The student should be made to:				
	1. To understand the theory and operational principles of instru				
	identification and quantitative analysis of chemical substance	es by a	liffere	nt type	s of
	spectroscopy.				
	2. To impart fundamental knowledge on gas chromatography a	nd liq	uid		
	chromatography.				
	3. To integrate a fundamental understanding of the underlining	.	•	· ·	cs as
	they relate to specific instrumentation used for gas analyzers	and p	ollutio	n	
	monitoring instruments.				
	 To impart knowledge on the important measurement in many and laboratories handling liquids or solutions. 	y chen	ncar p	rocess	28
	5. To understand the working principle, types and applications	of NN	ID and	Mass	
	spectroscopy.			1111455	
UNIT I	SPECTROPHOTOMETRY			9	Hours
	thods of analysis – Beer-Lambert law – UV-Visible spectroscopy – IR Spe	ectroph	notome		
	ometry – Atomic absorption spectrophotometry – Flame emission and ator				
	on, working principle, sources detectors and applications.			r	
UNIT II	CHROMATOGRAPHY			9	Hours
General principle	es - classification - chromatographic behavior of solutes - quantitative determ	inatio	ı – Gas	5	
	 Liquid chromatography – High-pressure liquid chromatography – Applicati 				
UNIT III	INDUSTRIAL GAS ANALYZERS AND POLLUTION MONITO				Hours
	Oxygen, NO2 and H2S types, IR analyzers, thermal conductivity detectors, an				
	ution due to carbon monoxide, hydrocarbons, nitrogen oxides, sulphur dioxide	e estim	ation –	Dust a	ind
smoke measurem	pH METERS AND DISSOLVED COMPONENT ANALYZEI			0	Hours
	ctrodes – Principle of pH and conductivity measurements – dissolved oxygen		er – So		.10015
	n analyzer – Water quality Analyzer.	unur y 2		arann	
UNIT V	NUCLEAR MAGNETIC RESONANCE AND MASS SPECTROM	ETRY	ζ	9]	Hours
Basic principles	- Continuous and Pulsed Fourier Transform NMR spectrometer – Mass Spect	rometr	y – Sai	mple sy	/stem
	nods – Mass analyzers – Types of mass spectrometry.		2		
		Т	otal:	45]	Hours
Course Outcom					
	After completion of the course, Student will be able to				
	1. Ability to understand the fundamental principles of selective analytical	1 /	1.		
	instruments used in medical diagnosis, quality assurance & control and research a statistical method for a specific	arch st	udies.		
	2. Ability to assess and suggest a suitable analytical method for a specific purpose, and evaluate sensitivity, important sources of interferences and error	ore an	ا مادم ه	ווממספו	
	alternative analytical methods for quality assurance.	<i>ns</i> , an	1 a150 c	suggesi	
	3. Ability to critically evaluate the strengths and limitations of the various inst	strume	ntal me	ethods.	
	4. Ability to develop critical thinking for interpreting analytical data.				
	5. Ability to understand the working principle, types and applications of NM	R and	Mass s	nectro	sconv
Further Readin				recub	<u></u>
	ethods of Chemical Analysis				
Text Books:	· · · · · · · · · · · · · · · · · · ·				
	H.H., Merritt, L.L., Dean, J.A., Settle, F.A., "Instrumental methods of analys	is", CE	S pub	lishing	&
	ion, 7th Edition, 2012.				
2. Braun, F	R.D., "Introduction to Instrumental Analysis", Pharma Book Syndicate, Singar	pore, 2	006		
References:					
1. Khandpu 2007.	ur, R.S., "Handbook of Analytical Instruments", Tata McGraw-Hill publishing	g Co. I	.td.,2no	d Editio	n
2. Ewing, 0	G.W., "Instrumental Methods of Chemical Analysis", McGraw-Hill, 5th Editioned in 2007).	on repi	rint 198	35.	
	lecture notes on, "Modern Instrumental methods of Analysis" by Dr.J.R. Mud	lakavi.	IISC.	Bangal	ore.
	, ,		,.		

		Т	Р	Ε			
1901HS003	STARTUP ENTREPRENEURSHIP	ton 0 mc	u9)	Regulatio			
PREREQUISITE:	The course assumes no prior skill or background in design, art, engineering,	or sci	ence	It is			
	open to all undergraduates and graduate students with an interest in learning		ence	10 15			
	Entrepreneurship, and is especially recommended for those students plannin		ture				
	creation and other kinds of entrepreneurial interventions	-					
COURSE OBJECT							
	1. Understand the terminology and conceptual of Entrepreneurship & Sta	artups					
	2. Understand real time problem solving methodologies with tools		1.	<u> </u>			
	3. Recognize the ethical and social dilemmas and obligations of the pract solutions	tice of	desig	gn of			
	4. Diagnose common adoption barriers in individuals, groups and organizations.						
 Develop a design theory from independent and qualitative research and observations 							
	6. Participate in and lead innovation in creative and collaborative settings		1 vau	0115			
	 Fundertake complex and unstructured problem-solving challenges in unit 		or do	maina			
COURSE OUTCO		lamma	ai uo	manns			
COURSE 001CO CO1	Detail Entrepreneurship and Startup Basics						
C02	Employ the methods and tools of Problem Solving in business context						
C03	Project Startup Idea Development Process and Methodologies through Real 1	Proble	m Sc	lving			
CO4	Develop Startup Prototype through Customer Validation and Business Mode			0			
C05							
Module I	Explain Intellectual Property Rights and its importance in business context Entrepreneurship & Startup Basics		5 1	Iours			
	asics – Skill Set, Mindset, Examples, Startup basics overview, Indian Sta	rtun F					
	ation, Selection, Evaluation, Validation, Teaming	rtup 1	20055	stem,			
Module II	Customer Discovery Process		7 I	Iours			
	Process, Opportunity Identification, Evaluating Opportunities, Customer d						
	Results presentation and hypothesis refinement. Focus on customer segments	s of th	e bu	siness			
model canvas.			<i>–</i> – –	T			
Module III Idention Proinctor	Ideation ming, Technology driven Ideation, Continued customer discovery and updates	to hu		Hours			
	osition of business model canvas.	to ny	poure	515.			
Module IV	Market Analysis		6 I	Iours			
	erform market research, Competitive advantage landscape, Market Size, Go-T	'o Mar	ket				
Strategies, Continue	d customer discovery and updates to hypothesis. Focus on channels of busines	s mod	el ca	nvas.			
	Mid-term presentation on startup idea, refined hypothesis through cust	tomer					
Module V	Minimum Viable Product			Hours			
	oduct/Validation: Product market fit, use customer discovery in defining the M cific customer use-cases. Focus on metrics of business model canvas.	IVP, B	Suild	Proof			
Module VI	Business Models	71	lours	,			
	etrics – Chosen business model for the venture, Focus on key resources/activiti						
	customer validation phase.		ousin	055			
Module VII	Pivoting	3 H	lours	5			
Pivoting - Pivot pro	duct and business models based on customer discovery and validation, Choose	e pivot	t dire	ction.			
Focus on cost struct	ures and partners of business model canvas. Continued customer validation.	_					
-	tion on startup prototype, preliminary results from customer validation, p	protot	ype				
refinements and pla		4 1	[
Module VIII	IP/Legal		lours				
validation.	e of IP, Protect IP, Licensing IP, IP based Entrepreneurship; Examples, Con	itinuec	i cus	tomer			
Module IX	Capital	3 H	lours	1			
	quirement for the venture, Raising capital & increments, Continued custor						
	idity events, Trade-offs	Sinci	vana	ution.			
	al presentations of startup idea, refined prototype, customer validation, a	nd fu	ture	plans			
	TOTA			-			
FURTHER READ							
1	1. The Startup Owner's Manual: The Step-By-Step Guide for Building a Grea	t Com	ipany	' by			
	Steve Blank	***					
2	2. Value Proposition Design: How to Create Products and Services Customer	s Wan	It				
	(Strategyzer) by Alexander OsterwalderBusiness Model Generation: A Handbook for Visionaries, Game Changers	and					
	Challengers by Alexander Osterwalder	, and					
	Chanongors by micranuor Osterwander						

4. The Four Steps	to the Epiphany, Steven Blank
REFERENCES:	
	Creative Potential Within Us All Book by David M. Kelley and Tom
Kelley, 2013	
2.Change by Design: How Design Think	king Transforms Organizations and Inspires Innovation
Book by Tim Brown, 2009	
3. The art of Innovation by Tom Kelly,	2011
e e e	tion: What They Can't Teach You at Business Or Design School Book by
IdrisMootee, 2013	
5. The Design of Everyday Things Book	k by Don Norman, 1988
6. The Design Thinking Playbook: Mind	dful Digital Transformation of Teams, Products, Services, Businesses and
Ecosystems Book by Michael Lewrick,	2017.
7. https://nptel.ac.in/courses/109104109	<u>/</u>

Employability Enhanced Course Project Seminar Internship (EEE / PSI)

1904BM653		MINI PR	DJECT	L	Т	Р	С		
				0	0	2	1		
Course Objectives:	The stude	ents should be made to:							
	tec	technical presentation.							
	2. To test technical presentation and communication skills.								
The students (with team size of 4 students in a team) are expected to make mini project on top (Preferably in recent trends) related to Biomedical Engineering. A faculty guide is to be allotted if requested and h she will guide and monitor the progress of the student and maintain attendance also (If no guide is requested th course co coordinator will take care of attendance). Students are encouraged to use various teaching aids such as pow point presentation and demonstrative models which should be presented to panel which consist of three facult (excluding course co coordinator). The average of the mark given by all panel members is taken into consideration							ted and he / uested then ch as power ee faculties		
Evaluation Sche	me: Conti	nuous Assessment (100)							
Distribution of n	narks for Co	ontinuous Assessment:							
ZEROTH REVIE	W :		10 marks						
FIRST REVIEW:			20 marks						
SECOND REVIE	W:		20 marks						
FINAL REVIEW	/ DEMO:		30 marks						
REPORT:			20 marks						
Total Marks:			100						
				Tot	al:		30 Hours		
Course Outcome									
	After completion of the course, Student will be able to								
	 Utilize various technical resources available from multiple fields. Improve the technical presentation and communication skills. 								
	 Improve the technical presentation and communication skills. Connect different domains to make intelligent system. 								
			wledge with discussing others.						
	5. Produce different assignments based on real time systems.								

1904BM654	INDUSTRIAL VISIT PRESENTATION	N	L	Т	Р	C	
			0	0	2	1	
two industrial v	r to provide the experiential learning to the students, sh isit / field visits in a year. A presentation based on Indu itable credit may be awarded.		-				
	Internal Assessment Only						
	Test	40					
	Presentation / Quiz / Group Discussion	40					
	Report	20					
	Grades (Excellent / Good / Satisfactory / Not Satisfactory)						

1904GE651		LIFE SKILLS: APTITUI	DE - II		L	Т	P	С		
					0	0	2	1		
Course Obj										
		problem solving skill and to								
		issues and factors								
		3. To be able to demonstrate various principles involved in solving mathematical problems and								
	· · · · · · · · · · · · · · · · · · ·	thereby reducing the time taken for performing job functions.4. To enhance analytical ability of students								
		logical and critical thinking								
	5. To augment		of Student							
Unit I	Partnershin Mivt	res and Allegations, Probl	om on Agos Simple	Intoro	ct		5 1	Iours		
Omt I	Compound Interes	tes and Anegations, 1100	chi oli Ages, Shiipie		, 5 L,		51	iours		
Introduction		n between capitals, Period	of investments and	Shares-	Problen	is on	mixti	ires -		
		gation – Problems on ages -								
•		terest and time period are n								
		between simple interest and								
and time per		r	· · · · · · · · · · · · · · · · · · ·	j -			- F	r		
Unit II	Blood relations, , C	ocks, Calendars					5 H	Iours		
problems on time when th	n Blood Relations usir he angle is known - Re Year - Finding the num	ong the members of a fan g symbols and notations - F ation between Angle, Minut ber of Odd days - Framing	inding the angle whe es and Hours - Excep	en the ti tional ca	me is giv ases in cl	ven - l ocks -	Findir Defin	ng the nition		
Unit III	Time and Distance	Time and Work					5 F	Iours		
		and time - Converting kmph	into m/s and vice ve	ersa - Pr	oblems of	on ave				
		blems on trains - Problems								
		Unitary method - Relation								
		ns on alternate days - Proble								
Unit IV		and Data Sufficiency						Iours		
		ns on Line Graphs - Probler	ns on Bar Graphs - Pi	roblems	s on Pie C	Charts	- Dif	ferent		
		ems on data redundancy								
Unit V	Analytical and Cri	0						Iours		
		Problems on Circular arran								
	-	sons - Finding the Implicati	-			-	-			
		is on assumption - Problem	s on conclusions - Pr	oblems	on infere	ences	- Prol	olems		
on strengthe	ening and weakening of	arguments.	I							
			Т	Cotal:			30 E	Iours		

ASSESSM	IENT PATTERN :
	1. Two tests will be conducted (25 * 2) - 50 marks
	2. Five assignments will be conducted $(5*10) - 50$ Marks
Course O	utcomes:
	After completion of the course, Student will be able to
	1. Solve problems on Partnership, Mixture & Allegation and ages least time using shortcuts and apply real life situations
	2. Workout family relationships concepts, ability to visualize clocks & calendar and understand the logic behind a Sequence.
	3. Calculate concepts of speed, time and distance, understand timely completion using time and work.
	4. Learners should be able to understand various charts and interpreted data least time.
	5. Workout puzzles, ability to arrange things in an orderly fashion.
Reference	is:
1.	Arun Sharma, 'How to Prepare for Quantitative Aptitude for the CAT', 7th edition, McGraw Hills
	publication, 2016.
2.	Arun Sharma, 'How to Prepare for Logical Reasoning for CAT', 4th edition, McGraw Hills publication,
	2017.
3.	R S Agarwal, 'A modern approach to Logical reasoning', revised edition, S.Chand publication, 2017.
4.	R S Agarwal, 'Quantitative Aptitude for Competitive Examinations', revised edition, S.Chand publication, 2017.
5.	Rajesh Verma, "Fast Track Objective Arithmetic", 3 rd edition, Arihant publication, 2018.
	B.S. Sijwalii and InduSijwali, "A New Approach to REASONING Verbal & Non-Verbal", 2 nd edition, Arihnat publication, 2014.

Professional Elective - III

1903BM014	Medical Imaging	L	Т	Р	С			
		3	0	0	3			
	(For B.E.,BME)							
Course Objective	es: The student should be made to:							
	1. To study the formation of an image and its acquisition							
	2. To introduce the use and application of transforms in image processing							
	3. To study techniques for image segmentation in corrupted images							
	4. To learn for medical image extraction and selection.							
	5. To introduce schemes for compressing images to save storage s	pace						
UNIT I	DIGITAL IMAGE FUNDAMENTALS			91	Hours			
Elements of digi	tal image processing systems - Elements of visual perception, brightness, c	ontra	st, hue	, satur	ation,			
mach band effe	ct, Color image fundamentals - RGB, HSI models, Image sampling, Quantiz	ation,	Two-	dimen	sional			
mathematical p	reliminaries, 2D transforms - DFT, DCT, KLT, SVD.							
UNIT II	IMAGE ENHANCEMENT AND RESTORATION			91	Hours			
Point processing	g, Histograms, Histogram equalization and specification techniques, No	ise dis	tributi	ons, S	patial			
averaging, Direc	averaging, Directional Smoothing, Median, Geometric mean, Harmonic mean, Contra harmonic mean filters,							
Homomorphic f	iltering, Color image enhancement. Image Restoration - degradation mo	odel, L	Incons	traine	d and			
Constrained rest	toration .Geometric transformations.							
UNIT III	IMAGE SEGMENTATION			91	Hours			

Edge detection, Edge linking via Hough transform – Thresholding - Region based segmentation – Region growing –								
Region	splitting a	and merging – Segmentation by morphological watersheds – Hybrid methods						
UNIT I	[V	IMAGE FEATURE EXTRACTION AND SELECTION	9 Hours					
Feature	es- Featui	re space, Statistical features, Texture features-co-occurrence features and Run length	features,					
shape f	eatures. I	Feature selection – Need-PCA, statistical analysis and selection of features.						
UNIT V	V	IMAGE COMPRESSION	9 Hours					
Need for	Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, Vector Quantization,							
Transform coding, JPEG standard, MPEG.								
		Total: 4	45 Hours					
Course	Outcome	es:						
		After completion of the course, Student will be able to						
		1. Process color images and compute image transforms						
		2. Preprocess the image using image enhancement and filtering techniques.						
		3. Restore the degraded images.						
		4. Explain the Segment the region of interest in images.						
		5. Apply various compression techniques on images.						
Furthe	r Reading	gs: Image Modelling						
German	ny Weighs	s Biometric Registration Options for Visa Applicants						
Text Bo	ooks:							
1.	Rafael C	C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson, Education, Inc., 4th Ec	lition,					
	2017							
2.	Anil K. Ja	ain, "Fundamentals of Digital Image Processing", Pearson Education, Inc., 1st Edition, 201	.5					
3.	Milan So	onka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis and Machine vision", Ce	engage,					
	3rd Editi	ion, 2013.						
Referen								
1.	Kenneth	n R. Castleman, "Digital Image Processing", Pearson, 1st Edition, 2007.						
2.	Rafael C	C. Gonzalez, Richard E. Woods, Steven Eddins, "Digital Image Processing using MATLAB", P	'earson					
	Educatio	on, Inc., 2nd Edition, 2017.						
3.	William	K. Pratt, "Digital Image Processing", Wiley India Pvt Ltd, 4th Edition, 2010.						
4.	Alan C. E	Bovik, "Handbook of image and video processing", Elsevier Academic press, 2005						
5.		r, "Digital Image processing", Oxford University press, 2ndEdition, 2016						

1904GE751	LIFE SKILLS: COMPREHENSIVE VIVA	L	Т	Ρ	С			
		2	0	0	2			
Course Objectives:								
2.	Study the concepts of data structures, algorithms and computer archit Study the process and implementation of Operating systems and des Familiar with the database and network concepts			ompi	lers.			
Data Structure	es: Recursion. Arrays, Stacks, Queues, Linked lists, Trees, Graphs							
	earching – Sorting - Asymptotic worst case time and space complexity	/	ree	dy –	-			
Divide & Conqu	uer – Dynamic Programming							
	ganization: Machine instructions - Addressing modes - Hazards - chy - I/O interface	Pipe	elinii	ng -	-			
	stem: Processes – Threads - Inter-process communication - Concurre n – Deadlock - CPU scheduling - Memory management and virtual me							
<mark>systems</mark>								
Databases: ER-model - Relational model: Relational algebra, Tuple Calculus - SQL - Integrity constraints - Normal forms -Transactions and concurrency control								
Computer Net	works: Layering – Categories – Topology - Flow and Error control tec	hniq	ues	_				
Switching - IPv	4/IPv6 - Routing - TCP – UDP - Application layer protocols – Bluetootl	n - Ŵ	/i-Fi	i -				
Network securi	ty – Firewalls - Digital signatures and certificates.							

Compiler Design: Theory of Computation - Lexical analysis, parsing, syntax directed translation -Runtime environments - Intermediate code generation TOTAL 30 Hours COURSE OUTCOMES: At the end of this course, students will able to, CO1: Explore the concepts of data structures, algorithms and computer architecture. CO2: Elucidate the concepts of operating systems and designing compilers. CO3: Explain the concepts of networks and manage databases **REFERENCES:** 1. M.A.Weiss, Data Structures and Algorithm Analysis in C, Pearson Education Asia, 2015. 2. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, Computer Organization, McGraw-Hill, Third Reprint 2015. 3. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Principles", John Wiley & Sons (Asia) Pvt. Ltd, Ninth Edition, 2013. 4. Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman Compilers: Principles, Techniques and Tools, 2nd Edition, Pearson, 2012. 5. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database System Concepts, McGraw -Hill, 2015. 6. Behrouz A. Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2014. **ASSESSMENT PATTERN :** Marks (Continuous Assessment Only) Test I 25 Test II 25 Final Examination 50 **Total Marks 100**

1903BM012	_	INSTRUMENTATION ENGINEE	RING	L	Т	Р	C
Comme Ohio a	•			3	0	0	3
Course Object	ives:						
	1.	To understand the basics of Instruments.					
	2.	To understand the Transducers.					
	3.	To understand the Electrical and Electronic Inst	ruments				
	4.	To understand about basics of amplifier.	il unitentis				
		To apply the measuring data to measuring syste	m				
	5.	To upply the measuring data to measuring syste					
Unit I		INTRODUCTION				9 H	lour
	lements o	f an instrument – Static and Dynamic Characteri	stics – Er	rors in Inst	ruments		
		measurement data – Calibration					
Unit II		Transducer				9 H	lour
Definition – Cl	assificati	on of transducer – Selection of transducer – Resi	stance, Ca	apacitance	& Induc	<mark>tive</mark>	
transducer – Pi	ezo electi	ric transducer – Magnetostrictive Transducer.					
Unit III		Electrical & Electronic Instruments				9 H	lour
Ammeter, Volt	meter, M	oving Coil and Moving Iron Instruments- DC &	AC Poter	ntiometer -	DC & .	AC	
bridges- CRT	<mark>display –</mark>	Digital CRO – LED – LCD & Dot matrix display	<mark>/</mark> .				
Unit IV		Amplifier				9 H	lour
	Jon inver	ting Amplifier – Differential Amplifier – Instrum	entation	amplifier		/1	loui
inverting and i		ing i inplition Differential i inplition instrain	c intation	umphiloi			
Unit V	1	Data Aquistition System and Application	15			9 H	lours
	ta acquis	Data Aquistition System and Application ition system, A/D and D/A converters SCADA		SMART Tr	ansduce		lours
	 nta acquis	Data Aquistition System and Application ition system, A/D and D/A converters SCADA		SMART Tr	ansduce		lours
	ta acquis		– DCS, S	SMART Tr	ansduce	r.	
Elements of Da		ition system, A/D and D/A converters SCADA		SMART Tr	ansduce		
Elements of Da			– DCS, S	SMART Tr	ansduce	r.	
Elements of Da Further Readi	ng:	ition system, A/D and D/A converters SCADA	– DCS, S	SMART Tr	ansduce	r.	
Elements of Da Further Readi	ng: mes:	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil	– DCS, S Total:		ansduce	r.	
Elements of Da Further Readi	ng: mes:	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals.	– DCS, S Total:		ansduce	r.	
Elements of Da Further Readi	ng: mes:	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer.	- DCS, S Total:	to:		r. 45 H	
Elements of Da Further Readi	ng: mes:	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals.	- DCS, S Total:	to:		r. 45 H	
Elements of Da Further Readi	ng: mes:	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer.	- DCS, S Total:	to:		r. 45 H	
Elements of Da Further Readi Course Outco	ng: mes:	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer. 3. Interpret the technique used for electric	- DCS, S Total: l be able t al and ele	to:		r. 45 H	
Elements of Da Further Readi Course Outco Text books:	ng: mes: Upon s	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer. 3. Interpret the technique used for electric 4. Demonstrate the amplifiers 5. Outline the methods of Data acquisition	- DCS, S Total: I be able t al and ele	to:	asureme	r. 45 H	
Elements of Da Further Readi Course Outcor Course Outcor Text books: 1. Hand Book	ng: mes: Upon s	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer. 3. Interpret the technique used for electric 4. Demonstrate the amplifiers 5. Outline the methods of Data acquisition damentals of Electrical and Electronic measurem	- DCS, S Total: I be able t al and ele	to:	asureme	r. 45 H	
Elements of Da Further Readi Course Outcor Course Outcor Text books: 1. Hand Book	ng: mes: Upon s	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer. 3. Interpret the technique used for electric 4. Demonstrate the amplifiers 5. Outline the methods of Data acquisition	- DCS, S Total: I be able t al and ele	to:	asureme	r. 45 H	
Elements of Da Further Readi Course Outcor Course Outcor Text books: 1. Hand Book 2Measurem	ng: mes: Upon s	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer. 3. Interpret the technique used for electric 4. Demonstrate the amplifiers 5. Outline the methods of Data acquisition damentals of Electrical and Electronic measurem	- DCS, S Total: I be able t al and ele	to:	asureme	r. 45 H	
Elements of Da Further Readi Course Outcor Course Outcor Text books: 1. Hand Book 2Measurem	ng: mes: Upon s upon s	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer. 3. Interpret the technique used for electric 4. Demonstrate the amplifiers 5. Outline the methods of Data acquisition damentals of Electrical and Electronic measurem	- DCS, S Total: I be able t al and ele	to:	asureme	r. 45 H	
Further Readi Course Outcoo Text books: 1. Hand Book 2Measurem References:	ng: mes: Upon s Upon s	ition system, A/D and D/A converters SCADA Biomedical Instrumentation uccessful completion of this course, students wil 1. Explain the measuring fundamentals. 2. Illustrate the principle of Transducer. 3. Interpret the technique used for electric 4. Demonstrate the amplifiers 5. Outline the methods of Data acquisition damentals of Electrical and Electronic measurem m by Doebelin	- DCS, S Total: I be able t al and ele	to:	asureme	r. 45 H	

OBJECTIVES: The student should be made to

- Observe medical professionals at work in the wards and the roles of Allied Health Professionals;
- Provide access to healthcare Professionals to get a better understanding of their work; □ Demonstrate patient-care in a hospital setting.

ASSESSMENT:

- Students need to complete training in any leading Multi-speciality hospital for a period of 15 days. They need to prepare an extensive report and submit to their respective course incharges during the session.
- Out of the following departments, it is mandatory to complete training in any 10. The students can give a presentation of the remaining departments during laboratory hours.

S.No.	Departments for visit
1	Cardiology
2	ENT
3	Ophthalmology
4	Orthopaedic and Physiotherapy
5	ICU/CCU
6	Operation Theatre
7	Neurology
8	Nephrology
9	Radiology
10	Nuclear Medicine
11	Pulmonology
12	Urology
13	Obstetrics and Gynaecology
14	Emergency Medicine
15	Biomedical Engineering Department
16	Histo Pathology
17	Biochemistry
18	Paediatric/Neonatal
19	Dental
20	Oncology
21	PAC's
22	Medical Records / Telemetry

TOTAL : 15 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

• Advocate a patient-centred approach in healthcare

- Communicate with other health professionals in a respectful and responsible manner Recognize the importance of inter-professional collaboration in healthcare.
- Propose a patient-centred inter-professional health improvement plan based upon the patient's perceived needs
- Use the knowledge of one's own role and those of other professions to address the healthcare needs of populations and patients served.

-	1904BM752	In-plant Training/ Internship Presentation	LTPC
			0 0 0 1

Course Objectives:

• To provide hands-on experience at site where biomedical equipment are manufactured and utilized (Hospitals).

Course outcomes:

- 1. Learner will be able to gather a first hand experience on usage of various biomedical equipment.
- 2. Learner will be able to get familiar with various medical imaging techniques.
- 3. Learner will be able to gain some practical experience in servicing the equipment.

INDUSTRIAL TRAINING III

Students have to undergo two weeks practical training in biomedical equipment manufacturing companies or hospitals. At the end of the training student will submit a report as per the prescribed format to the department.

1904BM851	PROJECT WORK	LTPC
		0 0 14 07

OBJECTIVES:

To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department.

A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Headof the Department.

TOTAL: 300 PERIODS

OUTCOMES:

On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.